on the problems in "1 Algebraic functions/1.3 Miscellaneous"
Test results for the 136 problems in "1.3.1 Rational functions.txt"
Problem 1: Result is not expressed in closed-form.

$$
\int \frac{1}{-9 b x+9 x^{3}+2 b^{3 / 2} \sqrt{3}} \mathrm{~d} x
$$

Optimal(type 3, 55 leaves, 3 steps):

$$
-\frac{\ln (-x \sqrt{3}+\sqrt{b})}{27 b}+\frac{\ln (x \sqrt{3}+2 \sqrt{b})}{27 b}+\frac{\sqrt{3}}{9 \sqrt{b}(-3 x+\sqrt{3} \sqrt{b})}
$$

Result(type 7, 42 leaves):

$$
\frac{\left(\begin{array}{cc}
\sum_{R=\operatorname{RootOf}(-9 b} & Z+9 \\
\left.Z^{3}+2 b^{3} / 2 \sqrt{3}\right)^{3}-R^{2}-b
\end{array}\right)}{9}
$$

Problem 2: Result more than twice size of optimal antiderivative.

$$
\int\left(b^{3} x^{3}+3 a b^{2} x^{2}+3 a^{2} b x+a^{3}\right)^{3} \mathrm{~d} x
$$

Optimal(type 1, 12 leaves, 2 steps):

$$
\frac{(b x+a)^{10}}{10 b}
$$

Result(type 1, 97 leaves):

$$
\frac{1}{10} b^{9} x^{10}+a b^{8} x^{9}+\frac{9}{2} a^{2} b^{7} x^{8}+12 a^{3} b^{6} x^{7}+21 a^{4} b^{5} x^{6}+\frac{126}{5} a^{5} b^{4} x^{5}+21 a^{6} b^{3} x^{4}+12 a^{7} b^{2} x^{3}+\frac{9}{2} a^{8} b x^{2}+a^{9} x
$$

Problem 5: Result more than twice size of optimal antiderivative.

$$
\int\left(a c e+(a c f+a d e+b c e) x+(a d f+b c f+b d e) x^{2}+b d f x^{3}\right)^{3} \mathrm{~d} x
$$

Optimal(type 1, 347 leaves, 3 steps):
$\frac{(-a d+b c)^{3}(-a f+b e)^{3}(b x+a)^{4}}{4 b^{7}}+\frac{3(-a d+b c)^{2}(-a f+b e)^{2}(-2 a d f+b c f+b d e)(b x+a)^{5}}{5 b^{7}}$
$+\frac{(-a d+b c)(-a f+b e)\left(5 a^{2} d^{2} f^{2}-5 a b d f(c f+d e)+b^{2}\left(c^{2} f^{2}+3 c d e f+d^{2} e^{2}\right)\right)(b x+a)^{6}}{2 b^{7}}$
$+\frac{(-2 a d f+b c f+b d e)\left(10 a^{2} d^{2} f^{2}-10 a b d f(c f+d e)+b^{2}\left(c^{2} f^{2}+8 c d e f+d^{2} e^{2}\right)\right)(b x+a)^{7}}{7 b^{7}}$

$$
+\frac{3 d f\left(5 a^{2} d^{2} f^{2}-5 a b d f(c f+d e)+b^{2}\left(c^{2} f^{2}+3 c d e f+d^{2} e^{2}\right)\right)(b x+a)^{8}}{8 b^{7}}+\frac{d^{2} f^{2}(-2 a d f+b c f+b d e)(b x+a)^{9}}{3 b^{7}}+\frac{d^{3} f^{3}(b x+a)^{10}}{10 b^{7}}
$$

Result(type 1, 860 leaves):
$\frac{b^{3} d^{3} f^{3} x^{10}}{10}+\frac{(a d f+b c f+b d e) b^{2} d^{2} f^{2} x^{9}}{3}$
$+\frac{\left((a c f+a d e+b c e) b^{2} d^{2} f^{2}+2(a d f+b c f+b d e)^{2} b d f+b d f\left(2(a c f+a d e+b c e) b d f+(a d f+b c f+b d e)^{2}\right)\right) x^{8}}{8}+\frac{1}{7}\left(\left(a c e b^{2} d^{2} f^{2}\right.\right.$
$+2(a c f+a d e+b c e)(a d f+b c f+b d e) b d f+(a d f+b c f+b d e)\left(2(a c f+a d e+b c e) b d f+(a d f+b c f+b d e)^{2}\right)+b d f(2 a c e b d f$
$\left.+2(a c f+a d e+b c e)(a d f+b c f+b d e))) x^{7}\right)+\frac{1}{6}((2 a c e(a d f+b c f+b d e) b d f+(a c f+a d e+b c e)(2(a c f+a d e+b c e) b d f$
$\left.+(a d f+b c f+b d e)^{2}\right)+(a d f+b c f+b d e)(2 a c e b d f+2(a c f+a d e+b c e)(a d f+b c f+b d e))+b d f(2 a c e(a d f+b c f+b d e)$
$\left.\left.\left.+(a c f+a d e+b c e)^{2}\right)\right) x^{6}\right)+\frac{1}{5}\left(\left(a c e\left(2(a c f+a d e+b c e) b d f+(a d f+b c f+b d e)^{2}\right)+(a c f+a d e+b c e)(2 a c e b d f+2(a c f\right.\right.$
$\left.\left.+a d e+b c e)(a d f+b c f+b d e))+(a d f+b c f+b d e)\left(2 a c e(a d f+b c f+b d e)+(a c f+a d e+b c e)^{2}\right)+2 b d f a c e(a c f+a d e+b c e)\right) x^{5}\right)$
$+\frac{1}{4}\left(\left(a c e(2 a c e b d f+2(a c f+a d e+b c e)(a d f+b c f+b d e))+(a c f+a d e+b c e)\left(2 a c e(a d f+b c f+b d e)+(a c f+a d e+b c e)^{2}\right)\right.\right.$
$\left.\left.+2(a d f+b c f+b d e) a c e(a c f+a d e+b c e)+b d f a^{2} c^{2} e^{2}\right) x^{4}\right)$
$+\frac{\left(a c e\left(2 a c e(a d f+b c f+b d e)+(a c f+a d e+b c e)^{2}\right)+2(a c f+a d e+b c e)^{2} a c e+(a d f+b c f+b d e) a^{2} c^{2} e^{2}\right) x^{3}}{3}$
$+\frac{3 a^{2} c^{2} e^{2}(a c f+a d e+b c e) x^{2}}{2}+a^{3} c^{3} e^{3} x$

Problem 11: Unable to integrate problem.

$$
\int\left(d x^{3}+c x^{2}\right)^{n} \mathrm{~d} x
$$

Optimal(type 5, 57 leaves, 3 steps):

$$
\frac{x\left(d x^{3}+c x^{2}\right)^{n} \text { hypergeom }\left([-n, 1+2 n],[2+2 n],-\frac{d x}{c}\right)}{(1+2 n)\left(1+\frac{d x}{c}\right)^{n}}
$$

Result(type 8, 15 leaves):

$$
\int\left(d x^{3}+c x^{2}\right)^{n} \mathrm{~d} x
$$

Problem 17: Result is not expressed in closed-form.

$$
\int \frac{1}{8 x^{4}-x^{3}+8 x+8} \mathrm{~d} x
$$

Optimal(type 3, 192 leaves, 16 steps):

$$
-\frac{\arctan \left(\frac{\left(3-\left(1+\frac{4}{x}\right)^{2}\right) \sqrt{7}}{42}\right) \sqrt{7}}{84}-\frac{\ln \left(\left(1+\frac{4}{x}\right)^{2}+3 \sqrt{29}-\left(1+\frac{4}{x}\right) \sqrt{6+6 \sqrt{29}}\right) \sqrt{-132762+81606 \sqrt{29}}}{29232}
$$

$$
+\frac{\ln \left(\left(1+\frac{4}{x}\right)^{2}+3 \sqrt{29}+\left(1+\frac{4}{x}\right) \sqrt{6+6 \sqrt{29}}\right) \sqrt{-132762+81606 \sqrt{29}}}{29232}-\frac{\arctan \left(\frac{2+\frac{8}{x}-\sqrt{6+6 \sqrt{29}}}{\sqrt{-6+6 \sqrt{29}}}\right) \sqrt{132762+81606 \sqrt{29}}}{14616}
$$

$$
-\frac{\arctan \left(\frac{2+\frac{8}{x}+\sqrt{6+6 \sqrt{29}}}{\sqrt{-6+6 \sqrt{29}}}\right) \sqrt{132762+81606 \sqrt{29}}}{14616}
$$

Result(type 7, 40 leaves):

$$
\sum_{-R=\operatorname{Rootof}\left(8-Z^{4}-Z^{3}+8 _Z+8\right)} \frac{\ln \left(x-_R\right)}{32 R^{3}-3 _R^{2}+8}
$$

Problem 18: Result is not expressed in closed-form.

$$
\int \frac{1}{\left(4 x^{4}+4 x^{2}+4 x+1\right)^{2}} \mathrm{~d} x
$$

Optimal(type 3, 239 leaves, 17 steps):

$$
\begin{aligned}
& \frac{-17+\left(1+\frac{1}{x}\right)^{2}}{2\left(5-2\left(1+\frac{1}{x}\right)^{2}+\left(1+\frac{1}{x}\right)^{4}\right)}+\frac{\left(59-17\left(1+\frac{1}{x}\right)^{2}\right)\left(1+\frac{1}{x}\right)}{10\left(5-2\left(1+\frac{1}{x}\right)^{2}+\left(1+\frac{1}{x}\right)^{4}\right)}+\frac{7 \arctan \left(-\frac{1}{2}+\frac{\left(1+\frac{1}{x}\right)^{2}}{2}\right)}{4} \\
& \quad+\frac{\ln \left(\left(1+\frac{1}{x}\right)^{2}+\sqrt{5}-\left(1+\frac{1}{x}\right) \sqrt{2+2 \sqrt{5}}\right) \sqrt{-59590+26650 \sqrt{5}}}{400}-\frac{\ln \left(\left(1+\frac{1}{x}\right)^{2}+\sqrt{5}+\left(1+\frac{1}{x}\right) \sqrt{2+2 \sqrt{5}}\right) \sqrt{-59590+26650 \sqrt{5}}}{400} \\
& \quad-\frac{\arctan \left(\frac{2+\frac{2}{x}-\sqrt{2+2 \sqrt{5}}}{\sqrt{-2+2 \sqrt{5}})} \sqrt{59590+26650 \sqrt{5}}\right.}{\arctan \left(\frac{\left.2+\frac{2}{x}+\sqrt{2+2 \sqrt{5}}\right) \sqrt{59590+26650 \sqrt{5}}}{200}\right.}
\end{aligned}
$$

Result(type 7, 78 leaves):

$$
\frac{\frac{9}{20} x^{3}-\frac{1}{5} x^{2}+\frac{21}{40} x+\frac{19}{80}}{x^{4}+x^{2}+x+\frac{1}{4}}+\frac{\left.\sum_{R=\operatorname{RootOf}\left(4 Z^{4}+4 Z^{2}+4 Z+1\right)} \frac{\left(18 _R^{2}-16 _R+27\right) \ln (x-R)}{4 _R^{3}+2 _R+1}\right)}{40}
$$

Problem 20: Result more than twice size of optimal antiderivative.

$$
\int\left(b^{5} x^{5}+5 a b^{4} x^{4}+10 a^{2} b^{3} x^{3}+10 a^{3} b^{2} x^{2}+5 a^{4} b x+a^{5}\right)^{2} \mathrm{~d} x
$$

Optimal(type 1, 12 leaves, 2 steps):

$$
\frac{(b x+a)^{11}}{11 b}
$$

Result(type 1, 108 leaves):

$$
\frac{1}{11} b^{10} x^{11}+a b^{9} x^{10}+5 a^{2} b^{8} x^{9}+15 a^{3} b^{7} x^{8}+30 a^{4} b^{6} x^{7}+42 a^{5} b^{5} x^{6}+42 a^{6} b^{4} x^{5}+30 a^{7} b^{3} x^{4}+15 a^{8} b^{2} x^{3}+5 a^{9} b x^{2}+a^{10} x
$$

Problem 21: Result more than twice size of optimal antiderivative.

$$
\int\left(b^{5} x^{5}+5 a b^{4} x^{4}+10 a^{2} b^{3} x^{3}+10 a^{3} b^{2} x^{2}+5 a^{4} b x+a^{5}\right) \mathrm{d} x
$$

Optimal(type 1, 12 leaves, 1 step):

$$
\frac{(b x+a)^{6}}{6 b}
$$

Result(type 1, 53 leaves):

$$
a^{5} x+\frac{5}{2} a^{4} b x^{2}+\frac{10}{3} a^{3} b^{2} x^{3}+\frac{5}{2} a^{2} b^{3} x^{4}+a b^{4} x^{5}+\frac{1}{6} b^{5} x^{6}
$$

Problem 27: Result more than twice size of optimal antiderivative.

$$
\int \frac{1}{1-(d x+c)^{2}} \mathrm{~d} x
$$

Optimal(type 3, 10 leaves, 2 steps):

$$
\frac{\operatorname{arctanh}(d x+c)}{d}
$$

Result(type 3, 25 leaves):

$$
\frac{\ln (d x+c+1)}{2 d}-\frac{\ln (d x+c-1)}{2 d}
$$

Problem 29: Result more than twice size of optimal antiderivative.

$$
\int \frac{x^{2}}{\sqrt{1-(b x+a)^{2}}} \mathrm{~d} x
$$

Optimal (type 3, 57 leaves, 4 steps):

$$
\frac{\left(2 a^{2}+1\right) \arcsin (b x+a)}{2 b^{3}}+\frac{3 a \sqrt{1-(b x+a)^{2}}}{2 b^{3}}-\frac{x \sqrt{1-(b x+a)^{2}}}{2 b^{2}}
$$

Result(type 3, 151 leaves):

$$
-\frac{x \sqrt{-b^{2} x^{2}-2 a b x-a^{2}+1}}{2 b^{2}}+\frac{3 a \sqrt{-b^{2} x^{2}-2 a b x-a^{2}+1}}{2 b^{3}}+\frac{a^{2} \arctan \left(\frac{\sqrt{b^{2}}\left(x+\frac{a}{b}\right)}{\sqrt{-b^{2} x^{2}-2 a b x-a^{2}+1}}\right)}{b^{2} \sqrt{b^{2}}}+\frac{\arctan \left(\frac{\sqrt{b^{2}}\left(x+\frac{a}{b}\right)}{\sqrt{-b^{2} x^{2}-2 a b x-a^{2}+1}}\right)}{2 b^{2} \sqrt{b^{2}}}
$$

Problem 30: Result more than twice size of optimal antiderivative.

$$
\int \frac{x^{2}}{\sqrt{1+(b x+a)^{2}}} d x
$$

Optimal(type 3, 53 leaves, 4 steps):

$$
-\frac{\left(-2 a^{2}+1\right) \operatorname{arcsinh}(b x+a)}{2 b^{3}}-\frac{3 a \sqrt{1+(b x+a)^{2}}}{2 b^{3}}+\frac{x \sqrt{1+(b x+a)^{2}}}{2 b^{2}}
$$

Result(type 3, 145 leaves):

$$
\begin{aligned}
& \frac{x \sqrt{b^{2} x^{2}+2 a b x+a^{2}+1}}{2 b^{2}}-\frac{3 a \sqrt{b^{2} x^{2}+2 a b x+a^{2}+1}}{2 b^{3}} \\
& \quad \begin{array}{l}
\ln \left(\frac{b^{2} x+a b}{\sqrt{b^{2}}}+\sqrt{b^{2} x^{2}+2 a b x+a^{2}+1}\right) \\
2 b^{2} \sqrt{b^{2}}
\end{array}
\end{aligned}
$$

Problem 31: Result is not expressed in closed-form.

$$
\int \frac{1}{a+b(d x+c)^{4}} \mathrm{~d} x
$$

Optimal(type 3, 156 leaves, 10 steps):
$\frac{\arctan \left(-1+\frac{b^{1 / 4}(d x+c) \sqrt{2}}{a^{1 / 4}}\right) \sqrt{2}}{4 a^{3 / 4} b^{1 / 4} d}+\frac{\arctan \left(1+\frac{b^{1 / 4}(d x+c) \sqrt{2}}{a^{1 / 4}}\right) \sqrt{2}}{4 a^{3 / 4} b^{1 / 4} d}-\frac{\ln \left(-a^{1 / 4} b^{1 / 4}(d x+c) \sqrt{2}+\sqrt{a}+(d x+c)^{2} \sqrt{b}\right) \sqrt{2}}{8 a^{3 / 4} b^{1 / 4} d}$

$$
+\frac{\ln \left(a^{1 / 4} b^{1 / 4}(d x+c) \sqrt{2}+\sqrt{a}+(d x+c)^{2} \sqrt{b}\right) \sqrt{2}}{8 a^{3 / 4} b^{1 / 4} d}
$$

Result(type 7, 93 leaves):

$$
\frac{\sum_{\operatorname{RootOf}\left(b d^{4} Z^{4}+4 d^{3} c b Z^{3}+6 c^{2} d^{2} b Z^{2}+4 c^{3} d b \quad Z+b c^{4}+a\right)} \frac{\ln \left(x-_R\right)}{4 b d} \frac{d^{3} R^{3}+3 d^{2} c _R^{2}+3 c^{2} d _R+c^{3}}{}}{\text { 和 }}
$$

Problem 35: Result is not expressed in closed-form.

$$
\int \frac{1}{-x^{4}+4 x^{3}-8 x^{2}+a+8 x} \mathrm{~d} x
$$

Optimal(type 3, 65 leaves, 4 steps):

$$
-\frac{\arctan \left(\frac{-1+x}{\sqrt{1-\sqrt{4+a}}}\right)}{2 \sqrt{4+a} \sqrt{1-\sqrt{4+a}}}+\frac{\arctan \left(\frac{-1+x}{\sqrt{1+\sqrt{4+a}}}\right)}{2 \sqrt{4+a} \sqrt{1+\sqrt{4+a}}}
$$

Result(type 7, 48 leaves):

$$
\left.-\frac{\left.\sum_{R=\operatorname{RootOf}\left(Z^{4}-4\right.} Z^{3}+8 Z^{2}-8 \quad Z-a\right)-R^{3}-3 _R^{2}+4 _R-2}{4}\right)
$$

Problem 36: Result is not expressed in closed-form.

$$
\int \frac{1}{\left(-x^{4}+4 x^{3}-8 x^{2}+a+8 x\right)^{3}} \mathrm{~d} x
$$

Optimal(type 3, 219 leaves, 6 steps):

$$
\begin{aligned}
& \frac{\left(5+a+(-1+x)^{2}\right)(-1+x)}{8\left(a^{2}+7 a+12\right)\left(3+a-2(-1+x)^{2}-(-1+x)^{4}\right)^{2}}+\frac{\left((6+a)(25+7 a)+6(7+2 a)(-1+x)^{2}\right)(-1+x)}{32(3+a)^{2}(4+a)^{2}\left(3+a-2(-1+x)^{2}-(-1+x)^{4}\right)} \\
& -\frac{3 \arctan \left(\frac{-1+x}{\sqrt{1-\sqrt{4+a}}}\right)\left(80+7 a^{2}+14 \sqrt{4+a}+a(47+4 \sqrt{4+a})\right)}{64(3+a)^{2}(4+a)^{5} / 2 \sqrt{1-\sqrt{4+a}}}-\frac{3 \arctan \left(\frac{-1+x}{\sqrt{1+\sqrt{4+a}})}\right)\left(14+4 a+\frac{-7 a^{2}-47 a-80}{\sqrt{4+a}}\right)}{64(3+a)^{2}(4+a)^{2} \sqrt{1+\sqrt{4+a}}}
\end{aligned}
$$

Result(type 7, 397 leaves):

$$
\begin{aligned}
-\frac{1}{\left(x^{4}-4 x^{3}+8 x^{2}-a-8 x\right)^{2}}\left(\frac{3(7+2 a) x^{7}}{16\left(a^{4}+14 a^{3}+73 a^{2}+168 a+144\right)}-\frac{21(7+2 a) x^{6}}{16\left(a^{2}+8 a+16\right)\left(a^{2}+6 a+9\right)}+\frac{\left(7 a^{2}+343 a+1116\right) x^{5}}{32\left(a^{4}+14 a^{3}+73 a^{2}+168 a+144\right)}\right. \\
-\frac{5\left(7 a^{2}+175 a+528\right) x^{4}}{32\left(a^{4}+14 a^{3}+73 a^{2}+168 a+144\right)}+\frac{\left(34 a^{2}+679 a+1968\right) x^{3}}{16\left(a^{4}+14 a^{3}+73 a^{2}+168 a+144\right)}-\frac{\left(32 a^{2}+623 a+1800\right) x^{2}}{16\left(a^{4}+14 a^{3}+73 a^{2}+168 a+144\right)}
\end{aligned}
$$

$\left.-\frac{\left(11 a^{3}+107 a^{2}-84 a-1152\right) x}{32\left(a^{4}+14 a^{3}+73 a^{2}+168 a+144\right)}+\frac{11 a^{3}+131 a^{2}+408 a+288}{32\left(a^{4}+14 a^{3}+73 a^{2}+168 a+144\right)}\right)$
$\left.-\frac{3\left(\sum_{-R=\operatorname{RootOf}\left(Z^{4}-4-Z^{3}+8-Z^{2}-8 _Z-a\right)} \frac{\left(108+2(7+2 a) _R^{2}+4(-2 a-7) _R+7 a^{2}+55 a\right) \ln \left(x-_R\right)}{\left(_R^{3}-3 _R^{2}+4 _R-2\right)\left(a^{3}+10 a^{2}+33 a+36\right)(4+a)}\right)}{128}\right)$

Problem 41: Result is not expressed in closed-form.

$$
\int \frac{1}{x^{2}\left(b^{3} x^{6}+9 a b^{2} x^{4}+27 a^{2} c x^{3}+27 a^{2} b x^{2}+27 a^{3}\right)} \mathrm{d} x
$$

Optimal(type 3, 456 leaves, 14 steps):

$$
\begin{aligned}
& -\frac{1}{27 a^{3} x}-\frac{\left(2 b-3 a^{1 / 3} c^{2 / 3}\right) \ln \left(3 a+3 a^{2 / 3} c^{1 / 3} x+b x^{2}\right)}{486 a^{11 / 3} c^{1 / 3}}+\frac{\left(2 b-3(-1)^{2 / 3} a^{1 / 3} c^{2 / 3}\right) \ln \left(3 a-3(-1)^{1 / 3} a^{2 / 3} c^{1 / 3} x+b x^{2}\right)}{162\left(1+(-1)^{1 / 3}\right)^{2} a^{11} / 3 c^{1 / 3}} \\
& +\frac{(-1)^{1 / 3}\left(2 b+3(-1)^{1 / 3} a^{1 / 3} c^{2 / 3}\right) \ln \left(3 a+3(-1)^{2 / 3} a^{2 / 3} c^{1 / 3} x+b x^{2}\right)}{486 a^{11 / 3} c^{1 / 3}} \\
& +\frac{\left(2 b^{2}-12 a^{1 / 3} b c^{2 / 3}+9 a^{2 / 3} c^{4 / 3}\right) \arctan \left(\frac{\left(3 a^{2 / 3} c^{1 / 3}+2 b x\right) \sqrt{3}}{\left.3 \sqrt{a} \sqrt{4 b-3 a^{1 / 3} c^{2 / 3}}\right) \sqrt{3}}\right.}{729 a^{23 / 6} c^{2 / 3} \sqrt{4 b-3 a^{1 / 3} c^{2 / 3}}} \\
& +\frac{(-1)^{2 / 3}\left(2 b^{2}+12(-1)^{1 / 3} a^{1 / 3} b c^{2 / 3}+9(-1)^{2 / 3} a^{2 / 3} c^{4 / 3}\right) \arctan \left(\frac{\left(3(-1)^{2 / 3} a^{2 / 3} c^{1 / 3}+2 b x\right) \sqrt{3}}{3 \sqrt{a} \sqrt{4 b+3(-1)^{1 / 3} a^{1 / 3} c^{2 / 3}}}\right) \sqrt{3}}{243\left(1-(-1)^{1 / 3}\right)\left(1+(-1)^{1 / 3}\right)^{2} a^{23 / 6} c^{2 / 3} \sqrt{4 b+3(-1)^{1 / 3} a^{1 / 3} c^{2 / 3}}} \\
& +\frac{\left(2(-1)^{2 / 3} b^{2}+12(-1)^{1 / 3} a^{1 / 3} b c^{2 / 3}+9 a^{2 / 3} c^{4 / 3}\right) \arctan \left(\frac{\left(3(-1)^{1 / 3} a^{2 / 3} c^{1 / 3}-2 b x\right) \sqrt{3}}{\left.3 \sqrt{a} \sqrt{4 b-3(-1)^{2 / 3} a^{1 / 3} c^{2 / 3}}\right) \sqrt{3}}\right)}{243\left(1+(-1)^{1 / 3}\right)^{2} a^{23 / 6} c^{2 / 3} \sqrt{4 b-3(-1)^{2 / 3} a^{1 / 3} c^{2 / 3}}}
\end{aligned}
$$

Result(type 7, 132 leaves):

$$
\frac{\sum_{R=\operatorname{RootOf}\left(b^{3}-Z^{6}+9 a b^{2}-Z^{4}+27 c a^{2} Z^{3}+27 a^{2} b Z^{2}+27 a^{3}\right)} \frac{\left(--R^{4} b^{3}-9 _R^{2} a b^{2}-27 _R a^{2} c-27 a^{2} b\right) \ln \left(x-_R\right)}{2 R^{5} b^{3}+12 _R^{3} a b^{2}+27 _R^{2} a^{2} c+18 _R a^{2} b}}{81 a^{3}}-\frac{1}{27 a^{3} x}
$$

Problem 42: Result is not expressed in closed-form.

$$
\int \frac{x}{x^{6}+18 x^{4}+324 x^{3}+108 x^{2}+216} \mathrm{~d} x
$$

Optimal(type 3, 242 leaves, 14 steps):

$$
\begin{aligned}
& \frac{(-1)^{2 / 3} \ln \left(6-3(-3)^{1 / 3} 2^{2 / 3} x+x^{2}\right) 2^{2 / 3} 3^{1 / 3}}{1296\left(1+(-1)^{1 / 3}\right)^{2}}-\frac{(-1)^{2 / 3} \ln \left(6+3(-2)^{2 / 3} 3^{1 / 3} x+x^{2}\right) 2^{2 / 3} 3^{1 / 3}}{3888}-\frac{\ln \left(6+32^{2 / 3} 3^{1 / 3} x+x^{2}\right) 2^{2 / 3} 3^{1 / 3}}{3888} \\
& \quad-\frac{\arctan \left(\frac{3(-3)^{1 / 3} 2^{2 / 3}-2 x}{\sqrt{24-18(-3)^{2 / 3} 2^{1 / 3}}}\right) 2^{5 / 6} 3^{1 / 6}}{216\left(1+(-1)^{1 / 3}\right)^{2} \sqrt{4-3(-3)^{2 / 3} 2^{1 / 3}}}+\frac{\operatorname{arctanh}\left(\frac{2^{1 / 6}\left(33^{1 / 3}+2^{1 / 3} x\right)}{\left.\sqrt{-12+92^{1 / 3} 3^{2 / 3}}\right) 2^{5 / 6} 3^{1 / 6}}\right.}{648 \sqrt{-4+32^{1 / 3} 3^{2 / 3}}} \\
& +\frac{(-1)^{1 / 3} \arctan \left(\frac{3(-2)^{2 / 3} 3^{1 / 3}+2 x}{\sqrt{24+18(-2)^{1 / 3} 3^{2 / 3}}}\right) 2^{1 / 3} 3^{1 / 6}}{324 \sqrt{8+9 \mathrm{I} 2^{1 / 3} 3^{1 / 6}+32^{1 / 3} 3^{2 / 3}}}
\end{aligned}
$$

Result(type 7, 53 leaves):

$$
\left.\frac{\left(\sum_{R=\text { RootOf }\left(Z^{6}+18\right.} Z^{4}+324 Z^{3}+108 \quad Z^{2}+216\right) _R^{5}+12_{-} R^{3}+162 _R^{2}+36 _R}{}\right)
$$

Problem 43: Result is not expressed in closed-form.

$$
\int \frac{1}{x^{6}+18 x^{4}+324 x^{3}+108 x^{2}+216} \mathrm{~d} x
$$

Optimal(type 3, 255 leaves, 14 steps):

$$
\begin{aligned}
& -\frac{\ln \left(6-3(-3)^{1 / 3} 2^{2 / 3} x+x^{2}\right) 2^{1 / 3} 3^{2 / 3}}{1296\left(1+(-1)^{1 / 3}\right)^{2}}-\frac{(-1)^{1 / 3} 3^{2 / 3} \ln \left(6+3(-2)^{2 / 3} 3^{1 / 3} x+x^{2}\right) 2^{1 / 3}}{3888}+\frac{\ln \left(6+32^{2 / 3} 3^{1 / 3} x+x^{2}\right) 2^{1 / 3} 3^{2 / 3}}{3888} \\
& +\frac{(-1)^{2 / 3}\left(3(-3)^{2 / 3}-2^{2 / 3}\right) \arctan \left(\frac{3(-3)^{1 / 3} 2^{2 / 3}-2 x}{\sqrt{24-18(-3)^{2 / 3} 2^{1 / 3}}}\right) 3^{5 / 6}}{972\left(1+(-1)^{1 / 3}\right)^{2} \sqrt{8-6(-3)^{2 / 3} 2^{1 / 3}}}-\frac{\left(9-2^{2 / 3} 3^{1 / 3}\right) \operatorname{arctanh}\left(\frac{2^{1 / 6}\left(33^{1 / 3}+2^{1 / 3} x\right)}{\sqrt{-12+92^{1 / 3} 3^{2 / 3}}}\right)}{972 \sqrt{-24+182^{1 / 3} 3^{2 / 3}}} \\
& \quad+\frac{\left(9-(-2)^{2 / 3} 3^{1 / 3}\right) \arctan \left(\frac{3(-2)^{2 / 3} 3^{1 / 3}+2 x}{\sqrt{24+18(-2)^{1 / 3} 3^{2 / 3}}}\right)}{972 \sqrt{24+272^{1 / 3} 3^{1 / 6}+92^{1 / 3} 3^{2 / 3}}}
\end{aligned}
$$

Result(type 7, 52 leaves):

$$
\frac{\left.\left(\sum_{R=\operatorname{RootOf}\left(Z^{6}+18\right.} Z^{4}+324 Z^{3}+108 \quad Z^{2}+216\right)-\frac{\ln \left(x-{ }_{-} R\right)}{R^{5}+12_{-} R^{3}+162 _R^{2}+36 _R}\right)}{6}
$$

Problem 44: Result is not expressed in closed-form.

$$
\int \frac{x^{7}}{\left(x^{6}+18 x^{4}+324 x^{3}+108 x^{2}+216\right)^{2}} d x
$$

Optimal(type 3, 694 leaves, 23 steps):
$\frac{\left(-4(-1)^{1 / 3} 3^{2 / 3}-186^{1 / 3}+9\left((-2)^{2 / 3}+2(-1)^{1 / 3} 3^{2 / 3}\right) x\right) 2^{1 / 3}}{1944\left(1+(-1)^{1 / 3}\right)^{4}\left(4-3(-3)^{2 / 3} 2^{1 / 3}\right)\left(6-3(-3)^{1 / 3} 2^{2 / 3} x+x^{2}\right)}+\frac{-(-6)^{1 / 3}\left(9(-2)^{1 / 3}+23^{1 / 3}\right)+9\left(1+(-2)^{1 / 3} 3^{2 / 3}\right) x}{4374\left(8+92^{1 / 3} 3^{1 / 6}+32^{1 / 3} 3^{2 / 3}\right)\left(6+3(-2)^{2 / 3} 3^{1 / 3} x+x^{2}\right)}$
$+\frac{\left(4-62^{1 / 3} 3^{2 / 3}-3\left(6-2^{2 / 3} 3^{1 / 3}\right) x\right) 2^{1 / 3} 3^{2 / 3}}{17496\left(4-32^{1 / 3} 3^{2 / 3}\right)\left(6+32^{2 / 3} 3^{1 / 3} x+x^{2}\right)}+\frac{\operatorname{In}\left(6-3(-3)^{1 / 3} 2^{2 / 3} x+x^{2}\right) 2^{1 / 3} 3^{1 / 6}}{3888\left(1+(-1)^{1 / 3}\right)^{5}}-\frac{\ln \left(6+32^{2 / 3} 3^{1 / 3} x+x^{2}\right) 2^{1 / 3} 3^{2 / 3}}{104976}$

$$
\begin{aligned}
& -\frac{(-1)^{1 / 3}\left((-3)^{1 / 3}+32^{1 / 3}\right) \arctan \left(\frac{2^{1 / 6}\left(3(-3)^{1 / 3}-2^{1 / 3} x\right)}{\sqrt{12-9(-3)^{2 / 3} 2^{1 / 3}}}\right) 3^{1 / 6} \sqrt{2}}{324\left(1+(-1)^{1 / 3}\right)^{4}\left(4-3(-3)^{2 / 3} 2^{1 / 3}\right)^{3 / 2}}-\frac{\ln \left(6+3(-2)^{2 / 3} 3^{1 / 3} x+x^{2}\right)(\mathrm{I}+\sqrt{3}) 2^{1 / 3} 3^{1 / 6}}{7776\left(1+(-1)^{1 / 3}\right)^{5}} \\
& +\frac{\left(1+(-2)^{1 / 3} 3^{2 / 3}\right) \arctan \left(\frac{3(-2)^{2 / 3} 3^{1 / 3}+2 x}{\sqrt{24+18(-2)^{1 / 3} 3^{2 / 3}}}\right) \sqrt{6}}{324\left(1-(-1)^{1 / 3}\right)^{2}\left(1+(-1)^{1 / 3}\right)^{4}\left(4+3(-2)^{1 / 3} 3^{2 / 3}\right)^{3 / 2}}+\frac{\left(1-2^{1 / 3} 3^{2 / 3}\right) \operatorname{arctanh}\left(\frac{2^{1 / 6}\left(33^{1 / 3}+2^{1 / 3} x\right)}{\sqrt{-12+92^{1 / 3} 3^{2 / 3}}}\right) \sqrt{6}}{324\left(1-(-1)^{1 / 3}\right)^{2}\left(1+(-1)^{1 / 3}\right)^{4}\left(-4+32^{1 / 3} 3^{2 / 3}\right)^{3 / 2}} \\
& +\underline{\arctan \left(\frac{3(-3)^{1 / 3} 2^{2 / 3}-2 x}{\sqrt{24-18(-3)^{2 / 3} 2^{1 / 3}}}\right)\left(9 \mathrm{I}+3^{1 / 3}\left(2 \mathrm{I} 2^{2 / 3}-93^{1 / 6}+22^{2 / 3} \sqrt{3}\right)\right)} \\
& 5832\left(1+(-1)^{1 / 3}\right)^{5} \sqrt{8-6(-3)^{2 / 3} 2^{1 / 3}} \\
& +\frac{\left(93^{1 / 6}+\mathrm{I}\left(42^{2 / 3}-33^{2 / 3}\right)\right) \arctan \left(\frac{3(-2)^{2 / 3} 3^{1 / 3}+2 x}{\sqrt{24+18(-2)^{1 / 3} 3^{2 / 3}}}\right) 3^{1 / 3}}{582\left(1+(-1)^{1 / 3}\right)^{5} \sqrt{8+6(-2)^{1 / 3} 3^{2 / 3}}}+\frac{\left(22^{2 / 3}+33^{2 / 3}\right) \operatorname{arctanh}\left(\frac{2^{1 / 6}\left(33^{1 / 3}+2^{1 / 3} x\right)}{\left.\sqrt{-12+92^{1 / 3} 3^{2 / 3}}\right) 3^{5 / 6}}\right.}{78732 \sqrt{-8+62^{1 / 3} 3^{2 / 3}}}
\end{aligned}
$$

Result(type 7, 121 leaves):

$$
\begin{aligned}
& \frac{\frac{73}{68364} x^{5}-\frac{1}{3798} x^{4}+\frac{227}{17091} x^{3}+\frac{4}{633} x^{2}-\frac{8}{5697} x+\frac{2}{211}}{x^{6}+18 x^{4}+324 x^{3}+108 x^{2}+216}
\end{aligned}
$$

Problem 45: Result is not expressed in closed-form.

$$
\int \frac{x^{4}}{\left(x^{6}+18 x^{4}+324 x^{3}+108 x^{2}+216\right)^{2}} \mathrm{~d} x
$$

Optimal(type 3, 588 leaves, 23 steps):
$\frac{(-1)^{1 / 3} 3^{2 / 3}\left(3(-3)^{1 / 3} 2^{2 / 3}-2 x\right) 2^{1 / 3}}{34992\left(1+(-1)^{1 / 3}\right)^{4}\left(4-3(-3)^{2 / 3} 2^{1 / 3}\right)\left(6-3(-3)^{1 / 3} 2^{2 / 3} x+x^{2}\right)}-\frac{(-1)^{1 / 3} 3^{2 / 3}\left(3(-2)^{2 / 3} 3^{1 / 3}+2 x\right) 2^{1 / 3}}{157464\left(8+9 I^{1 / 3} 3^{1 / 6}+32^{1 / 3} 3^{2 / 3}\right)\left(6+3(-2)^{2 / 3} 3^{1 / 3} x+x^{2}\right)}$

$$
\begin{aligned}
& +\frac{-33^{1 / 3}-2^{1 / 3} x}{52488\left(92^{1 / 3}-43^{1 / 3}\right)\left(6+32^{2 / 3} 3^{1 / 3} x+x^{2}\right)}+\frac{(-1)^{1 / 3} \arctan \left(\frac{3(-3)^{1 / 3} 2^{2 / 3}-2 x}{\sqrt{24-18(-3)^{2 / 3} 2^{1 / 3}}}\right) 2^{1 / 3} 3^{1 / 6}}{4374\left(1+(-1)^{1 / 3}\right)^{4}\left(8-9 I 2^{1 / 3} 3^{1 / 6}+32^{1 / 3} 3^{2 / 3}\right)^{3 / 2}} \\
& -\frac{(-1)^{1 / 3} \arctan \left(\frac{3(-2)^{2 / 3} 3^{1 / 3}+2 x}{\sqrt{24+18(-2)^{1 / 3} 3^{2 / 3}}}\right) 2^{5 / 6} 3^{1 / 6}+\frac{\operatorname{arctanh}\left(\frac{2^{1 / 6}\left(33^{1 / 3}+2^{1 / 3} x\right.}{\sqrt{-12+92^{1 / 3} 3^{2 / 3}}}\right) 2^{5 / 6} 3^{1 / 6}}{17496\left(1-(-1)^{1 / 3}\right)^{2}\left(1+(-1)^{1 / 3}\right)^{4}\left(4+3(-2)^{1 / 3} 3^{2 / 3}\right)^{3 / 2}}+\frac{157464\left(-4+32^{1 / 3} 3^{2 / 3}\right)^{3 / 2}}{}}{-\frac{\ln \left(6-3(-3)^{1 / 3} 2^{2 / 3} x+x^{2}\right) 2^{2 / 3} 3^{1 / 3}}{209952\left(1+(-1)^{1 / 3}\right)^{4}}+\frac{\operatorname{Iln}\left(6+3(-2)^{2 / 3} 3^{1 / 3} x+x^{2}\right) 2^{2 / 3} 3^{5 / 6}}{209952\left(1+(-1)^{1 / 3}\right)^{5}}-\frac{\ln \left(6+32^{2 / 3} 3^{1 / 3} x+x^{2}\right) 2^{2 / 3} 3^{1 / 3}}{1889568}} \\
& -\frac{\operatorname{Iarctan}\left(\frac{2^{1 / 6}\left(3(-3)^{1 / 3}-2^{1 / 3} x\right)}{\sqrt{12-9(-3)^{2 / 3} 2^{1 / 3}}}\right) 2^{5 / 6} 3^{2 / 3}}{\arctan \left(\frac{3(-2)^{2 / 3} 3^{1 / 3}+2 x}{\left.\sqrt{24+18(-2)^{1 / 3} 3^{2 / 3}}\right)(\mathrm{I}+\sqrt{3}) 2^{5 / 6} 3^{2 / 3}}\right.} \begin{array}{l}
34992\left(1+(-1)^{1 / 3}\right)^{5} \sqrt{4-3(-3)^{2 / 3} 2^{1 / 3}}
\end{array} \frac{69984\left(1+(-1)^{1 / 3}\right)^{5} \sqrt{4+3(-2)^{1 / 3} 3^{2 / 3}}}{\operatorname{arctanh}\left(\frac{2^{1 / 6}\left(33^{1 / 3}+2^{1 / 3} x\right)}{\sqrt{-12+92^{1 / 3} 3^{2 / 3}}}\right) 2^{5 / 6} 3^{1 / 6}} \\
& +\frac{314928 \sqrt{-4+32^{1 / 3} 3^{2 / 3}}}{}
\end{aligned}
$$

Result(type 7, 121 leaves):

$$
\begin{aligned}
& -\frac{1}{136728} x^{5}+\frac{1}{153819} x^{4}-\frac{1}{5697} x^{3}-\frac{1}{844} x^{2}+\frac{1}{3798} x-\frac{4}{17091} \\
& x^{6}+18 x^{4}+324 x^{3}+108 x^{2}+216 \\
& \quad+\left(\begin{array}{c}
\sum_{-R=R o o t O f\left(_Z^{6}+18 Z^{4}+324 _Z^{3}+108 _Z^{2}+216\right)} \frac{\left(-9 _R^{4}+16 _R^{3}-324 _R^{2}+2628 _R-324\right) \ln \left(x-_R\right)}{R^{5}+12 _R^{3}+162 _R^{2}+36 _R}
\end{array}\right)
\end{aligned}
$$

Problem 46: Result is not expressed in closed-form.

$$
\int \frac{x^{3}}{\left(x^{6}+18 x^{4}+324 x^{3}+108 x^{2}+216\right)^{2}} \mathrm{~d} x
$$

Optimal(type 3, 601 leaves, 23 steps):

$$
\begin{aligned}
& \frac{(-6)^{1 / 3}\left(2(-3)^{1 / 3}+92^{1 / 3}\right)-3 x}{157464\left(8-9 \mathrm{I} 2^{1 / 3} 3^{1 / 6}+32^{1 / 3} 3^{2 / 3}\right)\left(6-3(-3)^{1 / 3} 2^{2 / 3} x+x^{2}\right)}+\frac{-(-6)^{1 / 3}\left(9(-2)^{1 / 3}+23^{1 / 3}\right)-3 x}{157464\left(8+9 \mathrm{I} 2^{1 / 3} 3^{1 / 6}+32^{1 / 3} 3^{2 / 3}\right)\left(6+3(-2)^{2 / 3} 3^{1 / 3} x+x^{2}\right)} \\
& +\frac{-22^{1 / 3}+36^{2 / 3}+3^{1 / 3} x}{104976\left(92^{1 / 3}-43^{1 / 3}\right)\left(6+32^{2 / 3} 3^{1 / 3} x+x^{2}\right)}-\frac{\operatorname{In}\left(6-3(-3)^{1 / 3} 2^{2 / 3} x+x^{2}\right) 2^{1 / 3} 3^{1 / 6}}{13996\left(1+(-1)^{1 / 3}\right)^{5}}+\frac{\ln \left(6+32^{2 / 3} 3^{1 / 3} x+x^{2}\right) 2^{1 / 3} 3^{2 / 3}}{3779136} \\
& +\frac{\arctan \left(\frac{3(-3)^{1 / 3} 2^{2 / 3}-2 x}{\sqrt{24-18(-3)^{2 / 3} 2^{1 / 3}}}\right) \sqrt{3} \quad \arctan \left(\frac{3(-2)^{2 / 3} 3^{1 / 3}+2 x}{\sqrt{24+18(-2)^{1 / 3} 3^{2 / 3}}}\right) \sqrt{3}}{78732\left(8-9 \mathrm{I} 2^{1 / 3} 3^{1 / 6}+32^{1 / 3} 3^{2 / 3}\right)^{3 / 2}}-\frac{\operatorname{lin}}{78732\left(8+9 \mathrm{I} 2^{1 / 3} 3^{1 / 6}+32^{1 / 3} 3^{2 / 3}\right)^{3 / 2}}
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{\ln \left(6+3(-2)^{2 / 3} 3^{1 / 3} x+x^{2}\right)(\mathrm{I}+\sqrt{3}) 2^{1 / 3} 3^{1 / 6}}{279936\left(1+(-1)^{1 / 3}\right)^{5}}-\frac{\operatorname{arctanh}\left(\frac{2^{1 / 6}\left(33^{1 / 3}+2^{1 / 3} x\right)}{\left.\sqrt{-12+92^{1 / 3} 3^{2 / 3}}\right) \sqrt{6}}\right.}{314928\left(-4+32^{1 / 3} 3^{2 / 3}\right)^{3 / 2}} \\
& -\frac{\arctan \left(\frac{3(-3)^{1 / 3} 2^{2 / 3}-2 x}{\sqrt{24-18(-3)^{2 / 3} 2^{1 / 3}}}\right)\left(9 \mathrm{I}-3^{1 / 3}\left(2 \mathrm{I} 2^{2 / 3}+93^{1 / 6}+22^{2 / 3} \sqrt{3}\right)\right)}{209952\left(1+(-1)^{1 / 3}\right)^{5} \sqrt{8-6(-3)^{2 / 3} 2^{1 / 3}}} \\
& +\frac{\left(9 \mathrm{I}+3^{1 / 3}\left(4 \mathrm{I} 2^{2 / 3}-93^{1 / 6}\right)\right) \arctan \left(\frac{3(-2)^{2 / 3} 3^{1 / 3}+2 x}{\sqrt{24+18(-2)^{1 / 3} 3^{2 / 3}}}\right)}{209952\left(1+(-1)^{1 / 3}\right)^{5} \sqrt{8+6(-2)^{1 / 3} 3^{2 / 3}}}+\frac{\left(22^{2 / 3}-33^{2 / 3}\right) \operatorname{arctanh}\left(\frac{2^{1 / 6}\left(33^{1 / 3}+2^{1 / 3} x\right)}{\sqrt{-12+92^{1 / 3} 3^{2 / 3}}}\right) 3^{5 / 6}}{2834352 \sqrt{-8+62^{1 / 3} 3^{2 / 3}}}
\end{aligned}
$$

Result(type 7, 121 leaves):
$\frac{1}{922914} x^{5}-\frac{1}{136728} x^{4}+\frac{4}{153819} x^{3}+\frac{1}{5697} x^{2}-\frac{73}{68364} x+\frac{1}{3798}$

$$
x^{6}+18 x^{4}+324 x^{3}+108 x^{2}+216
$$

Problem 51: Result more than twice size of optimal antiderivative.

$$
\int x^{7}\left(d x^{2}+b\right)^{7}\left(3 d x^{2}+b\right) d x
$$

Optimal(type 1, 14 leaves, 2 steps):

$$
\frac{x^{8}\left(d x^{2}+b\right)^{8}}{8}
$$

Result(type 1, 88 leaves):

$$
\frac{1}{8} d^{8} x^{24}+b d^{7} x^{22}+\frac{7}{2} b^{2} d^{6} x^{20}+7 b^{3} d^{5} x^{18}+\frac{35}{4} b^{4} d^{4} x^{16}+7 b^{5} d^{3} x^{14}+\frac{7}{2} b^{6} d^{2} x^{12}+b^{7} d x^{10}+\frac{1}{8} b^{8} x^{8}
$$

Problem 52: Result more than twice size of optimal antiderivative.

$$
\int x^{7}\left(d x^{2}+c x\right)^{7}\left(3 d x^{2}+2 c x\right) \mathrm{d} x
$$

Optimal(type 1, 12 leaves, 2 steps):

$$
\frac{x^{16}(d x+c)^{8}}{8}
$$

Result(type 1, 88 leaves):

$$
\frac{1}{8} d^{8} x^{24}+c d^{7} x^{23}+\frac{7}{2} c^{2} d^{6} x^{22}+7 c^{3} d^{5} x^{21}+\frac{35}{4} c^{4} d^{4} x^{20}+7 c^{5} d^{3} x^{19}+\frac{7}{2} c^{6} d^{2} x^{18}+c^{7} d x^{17}+\frac{1}{8} c^{8} x^{16}
$$

Problem 53: Result more than twice size of optimal antiderivative.

$$
\int x^{15}(d x+c)^{7}(3 d x+2 c) d x
$$

Optimal (type 1,12 leaves, 1 step):

$$
\frac{x^{16}(d x+c)^{8}}{8}
$$

Result(type 1, 88 leaves):

$$
\frac{1}{8} d^{8} x^{24}+c d^{7} x^{23}+\frac{7}{2} c^{2} d^{6} x^{22}+7 c^{3} d^{5} x^{21}+\frac{35}{4} c^{4} d^{4} x^{20}+7 c^{5} d^{3} x^{19}+\frac{7}{2} c^{6} d^{2} x^{18}+c^{7} d x^{17}+\frac{1}{8} c^{8} x^{16}
$$

Problem 54: Result more than twice size of optimal antiderivative.

$$
\int(b x+a)\left(1+\left(c+a x+\frac{1}{2} b x^{2}\right)^{4}\right) \mathrm{d} x
$$

Optimal(type 1, 25 leaves, 2 steps):

$$
a x+\frac{b x^{2}}{2}+\frac{\left(c+a x+\frac{1}{2} b x^{2}\right)^{5}}{5}
$$

Result(type 1, 324 leaves):

$$
\begin{aligned}
& \frac{b^{5} x^{10}}{160}+\frac{a b^{4} x^{9}}{16}+\frac{\left(\frac{a^{2} b^{3}}{2}+b\left(\frac{\left(a^{2}+b c\right) b^{2}}{2}+a^{2} b^{2}\right)\right) x^{8}}{8}+\frac{\left(a\left(\frac{\left(a^{2}+b c\right) b^{2}}{2}+a^{2} b^{2}\right)+b\left(a c b^{2}+2\left(a^{2}+b c\right) a b\right)\right) x^{7}}{7} \\
& \quad+\frac{\left(a\left(a c b^{2}+2\left(a^{2}+b c\right) a b\right)+b\left(\frac{c^{2} b^{2}}{2}+4 a^{2} c b+\left(a^{2}+b c\right)^{2}\right)\right) x^{6}}{6}+\frac{\left(a\left(\frac{c^{2} b^{2}}{2}+4 a^{2} c b+\left(a^{2}+b c\right)^{2}\right)+b\left(2 c^{2} a b+4 a c\left(a^{2}+b c\right)\right)\right) x^{5}}{5} \\
& \quad+\frac{\left(a\left(2 c^{2} a b+4 a c\left(a^{2}+b c\right)\right)+b\left(2 c^{2}\left(a^{2}+b c\right)+4 a^{2} c^{2}\right)\right) x^{4}}{4}+\frac{\left(a\left(2 c^{2}\left(a^{2}+b c\right)+4 a^{2} c^{2}\right)+4 b c^{3} a\right) x^{3}}{3}+\frac{\left(4 a^{2} c^{3}+b\left(c^{4}+1\right)\right) x^{2}}{2}+a\left(c^{4}\right. \\
& \quad+1) x
\end{aligned}
$$

Problem 58: Result more than twice size of optimal antiderivative.

$$
\int(1+2 x)\left(x^{2}+x\right)^{3}\left(-18+7\left(x^{2}+x\right)^{3}\right)^{2} \mathrm{~d} x
$$

Optimal(type 1, 31 leaves, ? steps):

$$
81 x^{4}(1+x)^{4}-36 x^{7}(1+x)^{7}+\frac{49 x^{10}(1+x)^{10}}{10}
$$

Result(type 1, 86 leaves):
$\frac{49}{10} x^{20}+49 x^{19}+\frac{441}{2} x^{18}+588 x^{17}+1029 x^{16}+\frac{6174}{5} x^{15}+993 x^{14}+336 x^{13}-\frac{1071}{2} x^{12}-1211 x^{11}-\frac{12551}{10} x^{10}-756 x^{9}-171 x^{8}+288 x^{7}+486 x^{6}$ $+324 x^{5}+81 x^{4}$

Problem 69: Result is not expressed in closed-form.

$$
\int \frac{x^{3}\left(2 x^{3}+3 x^{2}+x+5\right)}{2 x^{4}+x^{3}+5 x^{2}+x+2} d x
$$

Optimal(type 3, 217 leaves, 13 steps):

$$
\begin{aligned}
& \frac{x^{2}(7-5 \mathrm{I} \sqrt{7})}{28}+\frac{x^{3}(7-5 \mathrm{I} \sqrt{7})}{42}+\frac{x^{2}(7+5 \mathrm{I} \sqrt{7})}{28}+\frac{x^{3}(7+5 \mathrm{I} \sqrt{7})}{42}-\frac{x(35-9 \mathrm{I} \sqrt{7})}{28}-\frac{x(35+9 \mathrm{I} \sqrt{7})}{28} \\
& +\frac{3 \ln \left(4+4 x^{2}+x(1-\mathrm{I} \sqrt{7})\right)(7-11 \mathrm{I} \sqrt{7})}{112}+\frac{3 \ln \left(4+4 x^{2}+x(1+\mathrm{I} \sqrt{7})\right)(7+11 \mathrm{I} \sqrt{7})}{112}-\frac{11 \arctan \left(\frac{1+8 x+\mathrm{I} \sqrt{7}}{\sqrt{70-2 \mathrm{I} \sqrt{7}})(9 \mathrm{I}-5 \sqrt{7})}\right.}{4 \sqrt{490-14 \mathrm{I} \sqrt{7}}}
\end{aligned}
$$

$$
+\frac{11 \arctan \left(\frac{1+8 x-\mathrm{I} \sqrt{7}}{\sqrt{70+2 \mathrm{I} \sqrt{7}}}\right)(9 \mathrm{I}+5 \sqrt{7})}{\sqrt{100}}
$$

$$
4 \sqrt{490+14 I \sqrt{7}}
$$

Result (type 7, 73 leaves):

$$
\frac{x^{3}}{3}+\frac{x^{2}}{2}-\frac{5 x}{2}+\frac{\left.\sum_{R=\operatorname{RootOf}(2} Z^{4}+Z^{3}+5 \quad Z^{2}+Z+2\right)}{} \frac{\left.\frac{\left(3 _R^{3}+19 _R^{2}+_R+10\right) \ln \left(x-{ }^{2} R\right)}{8 _R^{3}+3 _R^{2}+10 _R+1}\right)}{2}
$$

Problem 90: Result more than twice size of optimal antiderivative.

$$
\int \frac{c x^{2}+b x+a}{f x^{4}+e x^{2}+d} d x
$$

Optimal(type 3, 171 leaves, 8 steps):

$$
-\frac{b \operatorname{arctanh}\left(\frac{2 f x^{2}+e}{\sqrt{-4 d f+e^{2}}}\right)}{\sqrt{-4 d f+e^{2}}}+\frac{\arctan \left(\frac{x \sqrt{2} \sqrt{f}}{\sqrt{e-\sqrt{-4 d f+e^{2}}}}\right)\left(c+\frac{2 a f-e c}{\sqrt{-4 d f+e^{2}}}\right) \sqrt{2}}{2 \sqrt{f} \sqrt{e-\sqrt{-4 d f+e^{2}}}}+\frac{\arctan \left(\frac{x \sqrt{2} \sqrt{f}}{\sqrt{e+\sqrt{-4 d f+e^{2}}}}\right)\left(c+\frac{-2 a f+e c}{\sqrt{-4 d f+e^{2}}}\right) \sqrt{2}}{2 \sqrt{f} \sqrt{e+\sqrt{-4 d f+e^{2}}}}
$$

Result(type 3, 615 leaves):
$\frac{\sqrt{-4 d f+e^{2}} b \ln \left(2 f x^{2}+\sqrt{-4 d f+e^{2}}+e\right)}{2\left(4 d f-e^{2}\right)}+\frac{2 f \sqrt{2} \arctan \left(\frac{f x \sqrt{2}}{\sqrt{\left(e+\sqrt{-4 d f+e^{2}}\right) f}}\right) c d}{\left(4 d f-e^{2}\right) \sqrt{\left(e+\sqrt{-4 d f+e^{2}}\right)_{f}}}-\frac{\sqrt{2} \arctan \left(\frac{f x \sqrt{2}}{\left.\sqrt{\left(e+\sqrt{-4 d f+e^{2}}\right) f}\right)}\right.}{2\left(4 d f-e^{2}\right) \sqrt{\left(e+\sqrt{-4 d f+e^{2}}\right) f}}$

$$
\begin{aligned}
& \quad \frac{f \sqrt{-4 d f+e^{2}} \sqrt{2} \arctan \left(\frac{f x \sqrt{2}}{\sqrt{\left(e+\sqrt{-4 d f+e^{2}}\right)_{f}}}\right) a}{\left(4 d f-e^{2}\right) \sqrt{\left(e+\sqrt{-4 d f+e^{2}}\right)_{f}}}-\frac{\sqrt{-4 d f+e^{2}} \sqrt{2} \arctan \left(\frac{f x \sqrt{2}}{\sqrt{\left(e+\sqrt{-4 d f+e^{2}}\right)_{f}}}\right) e c}{2\left(4 d f-e^{2}\right) \sqrt{\left(e+\sqrt{-4 d f+e^{2}}\right)_{f}}} \\
& \left.-\frac{\sqrt{-4 d f+e^{2}} b \ln \left(-2 f x^{2}+\sqrt{-4 d f+e^{2}}-e\right)}{2\left(4 d f-e^{2}\right)}-\frac{2 f \sqrt{2} \operatorname{arctanh}\left(\frac{f x \sqrt{2}}{\left.\sqrt{\left(\sqrt{-4 d f+e^{2}}-e\right)_{f}}\right) c d \sqrt{2} \operatorname{arctanh}\left(\frac{f x \sqrt{2}}{\sqrt{\left(\sqrt{-4 d f+e^{2}}-e\right)_{f}}}\right) c e^{2}}\right.}{\left(4 d f-e^{2}\right) \sqrt{\left(\sqrt{-4 d f+e^{2}}-e\right)_{f}}}+\frac{2\left(4 d f-e^{2}\right) \sqrt{\left(\sqrt{-4 d f+e^{2}}-e\right)_{f}}}{\left(4 d f-e^{2}\right) \sqrt{\left(\sqrt{-4 d f+e^{2}}-e\right)_{f}}}\right) a d \sqrt{-4 d f+e^{2} \sqrt{2} \operatorname{arctanh}\left(\frac{f x \sqrt{2}}{\sqrt{\left(\sqrt{-4 d f+e^{2}}-e\right)_{f}}}\right)} \\
& +\frac{f \sqrt{-4 d f+e^{2}} \sqrt{2} \operatorname{arctanh}\left(\frac{f x \sqrt{2}}{\sqrt{\left(\sqrt{-4 d f+e^{2}}-e\right)_{f}}}\right)}{2\left(4 d f-e^{2}\right) \sqrt{\left(\sqrt{-4 d f+e^{2}}-e\right)_{f}}}
\end{aligned}
$$

Problem 105: Result is not expressed in closed-form.

$$
\int \frac{x^{2}}{2-\left(-x^{2}+1\right)^{4}} \mathrm{~d} x
$$

Optimal(type 3, 103 leaves, 8 steps):
$-\frac{\mathrm{I} \operatorname{arctanh}\left(\frac{x}{\sqrt{1-\mathrm{I} 2^{1 / 4}}}\right) \sqrt{1-\mathrm{I} 2^{1 / 4}} 2^{1 / 4}}{8}+\frac{\mathrm{I} \operatorname{arctanh}\left(\frac{x}{\sqrt{1+\mathrm{I} 2^{1 / 4}}}\right) \sqrt{1+\mathrm{I} 2^{1 / 4}} 2^{1 / 4}}{8}-\frac{\arctan \left(\frac{x}{\left.\sqrt{-1+2^{1 / 4}}\right) \sqrt{-1+2^{1 / 4}} 2^{1 / 4}}\right.}{8}$

$$
+\frac{\operatorname{arctanh}\left(\frac{x}{\sqrt{1+2^{1 / 4}}}\right) \sqrt{1+2^{1 / 4}} 2^{1 / 4}}{8}
$$

Result(type 7, 55 leaves):

$$
-\frac{\left.\sum_{R=\operatorname{RootOf}\left(Z^{8}-4 Z^{6}+6 \quad Z^{4}-4 \quad Z^{2}-1\right)} \frac{R^{2} \ln \left(x-{ }_{-} R\right)}{R^{7}-3 _R^{5}+3 _R^{3}-{ }_{-} R}\right)}{8}
$$

Problem 106: Result is not expressed in closed-form.

$$
\int \frac{x^{2}}{2+\left(-x^{2}+1\right)^{4}} d x
$$

Optimal(type 3, 129 leaves, 8 steps):
$-\frac{(-1)^{1 / 4} \operatorname{arctanh}\left(\frac{x}{\sqrt{1-(-2)^{1 / 4}}}\right) \sqrt{1-(-2)^{1 / 4}} 2^{1 / 4}}{8}+\frac{(-1)^{3 / 4} 2^{1 / 4} \operatorname{arctanh}\left(\frac{x}{\sqrt{1+\mathrm{I}(-2)^{1 / 4}}}\right) \sqrt{1+\mathrm{I}(-2)^{1 / 4}}}{8}$

$$
+\frac{(-1)^{1 / 4} \operatorname{arctanh}\left(\frac{x}{\sqrt{1+(-2)^{1 / 4}}}\right) \sqrt{1+(-2)^{1 / 4}} 2^{1 / 4}}{8}-\frac{\operatorname{I\operatorname {arctanh}(x\sqrt {\frac {1+\mathrm {I}}{1+\mathrm {I}+2^{3/4}}})((-2)^{1/4}+\sqrt {2})\sqrt {\frac {1+\mathrm {I}}{1+\mathrm {I}+2^{3/4}}}}}{8}
$$

Result(type 7, 55 leaves):

$$
\frac{\left.\left(\sum_{R=\operatorname{RootOf}\left(Z^{8}-4 Z^{6}+6\right.} Z^{4}-4 \quad Z^{2}+3\right)-\frac{R^{2} \ln \left(x-_{-} R\right)}{R^{7}-3 R^{5}+3 R^{3}-__{-} R}\right)}{8}
$$

Problem 107: Result is not expressed in closed-form.

$$
\int \frac{-x^{2}+1}{a+b\left(x^{2}-1\right)^{4}} d x
$$

Optimal(type 3, 435 leaves, 17 steps):

$$
\begin{aligned}
& -\frac{\arctan \left(\frac{b^{1 / 8} x}{\sqrt{(-a)^{1 / 4}-b^{1 / 4}}}\right)}{4 b^{3 / 8} \sqrt{-a} \sqrt{(-a)^{1 / 4}-b^{1 / 4}}}+\frac{\operatorname{arctanh}\left(\frac{b^{1 / 8} x}{\sqrt{(-a)^{1 / 4}+b^{1 / 4}}}\right)}{4 b^{3 / 8 \sqrt{-a} \sqrt{(-a)^{1 / 4}+b^{1 / 4}}}-\frac{\arctan \left(\frac{\left.-b^{1 / 8} x \sqrt{2}+\sqrt{b^{1 / 4}+\sqrt{\sqrt{-a}+\sqrt{b}}}\right) \sqrt{-b^{1 / 4}+\sqrt{\sqrt{-a}+\sqrt{b}} \sqrt{2}}}{\sqrt{-b^{1 / 4}+\sqrt{\sqrt{-a}+\sqrt{b}}}}\right.}{8 b^{3 / 8 \sqrt{-a} \sqrt{\sqrt{-a}}+\sqrt{b}}} . \frac{1}{}} \\
& +\frac{\arctan \left(\frac{b^{1 / 8} x \sqrt{2}+\sqrt{b^{1 / 4}+\sqrt{\sqrt{-a}+\sqrt{b}}}}{\sqrt{-b^{1 / 4}+\sqrt{\sqrt{-a}+\sqrt{b}}}}\right) \sqrt{-b^{1 / 4}+\sqrt{\sqrt{-a}+\sqrt{b}}} \sqrt{2}}{8 b^{3 / 8} \sqrt{-a} \sqrt{\sqrt{-a}+\sqrt{b}}} \\
& +\frac{\ln \left(b^{1 / 4} x^{2}+\sqrt{\sqrt{-a}+\sqrt{b}}-\sqrt{2} \sqrt{b^{1 / 4}+\sqrt{\sqrt{-a}+\sqrt{b}}} b^{1 / 8} x\right) \sqrt{b^{1 / 4}+\sqrt{\sqrt{-a}+\sqrt{b}}} \sqrt{2}}{} \\
& 16 b^{3 / 8} \sqrt{-a} \sqrt{\sqrt{-a}+\sqrt{b}} \\
& -\frac{\ln \left(b^{1 / 4} x^{2}+\sqrt{\sqrt{-a}+\sqrt{b}}+\sqrt{2} \sqrt{b^{1 / 4}+\sqrt{\sqrt{-a}+\sqrt{b}}} b^{1 / 8} x\right) \sqrt{b^{1 / 4}+\sqrt{\sqrt{-a}+\sqrt{b}} \sqrt{2}}}{16 b^{3 / 8} \sqrt{-a} \sqrt{\sqrt{-a}+\sqrt{b}}}
\end{aligned}
$$

Result(type 7, 68 leaves):

$$
\frac{\left.\sum^{R=R o o t O f\left(b Z^{8}-4 b\right.} Z^{6}+6 b Z^{4}-4 b \quad Z^{2}+a+b\right)}{8 b} \frac{\left(-R^{2}+1\right) \ln \left(x-{ }_{-} R\right)}{R^{7}-3 _R^{5}+3 _R^{3}-__{-} R}
$$

Problem 134: Result more than twice size of optimal antiderivative.

$$
\int \frac{x^{2}}{1+\left(x^{2}-1\right)^{2}} d x
$$

Optimal(type 3, 132 leaves, 10 steps):

$$
\begin{aligned}
& -\frac{\arctan \left(\frac{-2 x+\sqrt{2+2 \sqrt{2}}}{\sqrt{-2+2 \sqrt{2}}}\right) \sqrt{2+2 \sqrt{2}}}{4}+\frac{\arctan \left(\frac{2 x+\sqrt{2+2 \sqrt{2}}}{\sqrt{-2+2 \sqrt{2}}}\right) \sqrt{2+2 \sqrt{2}}}{4} \\
& \quad-\frac{\ln \left(x^{2}+\sqrt{2}+x \sqrt{2+2 \sqrt{2}}\right)}{4 \sqrt{2+2 \sqrt{2}}}
\end{aligned}
$$

Result(type 3, 307 leaves):

$$
\begin{aligned}
& \frac{\sqrt{2+2 \sqrt{2}} \sqrt{2} \ln \left(x^{2}+\sqrt{2}-x \sqrt{2+2 \sqrt{2}}\right)}{8}+\frac{\sqrt{2}(2+2 \sqrt{2}) \arctan \left(\frac{2 x-\sqrt{2+2 \sqrt{2}})}{\sqrt{-2+2 \sqrt{2}})}\right.}{4 \sqrt{-2+2 \sqrt{2}}}-\frac{\sqrt{2+2 \sqrt{2}} \ln \left(x^{2}+\sqrt{2}-x \sqrt{2+2 \sqrt{2}}\right)}{8} \\
& -\frac{(2+2 \sqrt{2}) \arctan \left(\frac{2 x-\sqrt{2+2 \sqrt{2}}}{\sqrt{-2+2 \sqrt{2}}}\right)}{4 \sqrt{-2+2 \sqrt{2}}}-\frac{\sqrt{2+2 \sqrt{2}} \sqrt{2} \ln \left(x^{2}+\sqrt{2}+x \sqrt{2+2 \sqrt{2}}\right)}{8}+\frac{\sqrt{2}(2+2 \sqrt{2}) \arctan \left(\frac{2 x+\sqrt{2+2 \sqrt{2}}}{\sqrt{-2+2 \sqrt{2}})}\right.}{4 \sqrt{-2+2 \sqrt{2}}} \\
& +\frac{\sqrt{2+2 \sqrt{2}} \ln \left(x^{2}+\sqrt{2}+x \sqrt{2+2 \sqrt{2}}\right)}{8}-\frac{(2+2 \sqrt{2}) \arctan \left(\frac{2 x+\sqrt{2+2 \sqrt{2}}}{\sqrt{-2+2 \sqrt{2}})}\right.}{4 \sqrt{-2+2 \sqrt{2}}}
\end{aligned}
$$

Problem 135: Result is not expressed in closed-form.

$$
\int\left(\frac{3\left(19 x^{3}+120 x^{2}+228 x-47\right)}{\left(x^{4}+x+3\right)^{4}}+\frac{-8 x^{3}-75 x^{2}-320 x+42}{\left(x^{4}+x+3\right)^{3}}+\frac{30 x}{\left(x^{4}+x+3\right)^{2}}\right) \mathrm{d} x
$$

Optimal(type 1, 27 leaves, ? steps):

$$
\frac{-5 x^{6}+x^{4}+5 x^{2}-3 x+2}{\left(x^{4}+x+3\right)^{3}}
$$

Result(type 7, 249 leaves):

$$
\frac{\frac{377432}{195075} x^{7}-\frac{1404328}{195075} x^{6}+\frac{234517}{195075} x^{5}+\frac{660506}{195075} x^{4}-\frac{208792}{195075} x^{3}-\frac{13339729}{390150} x^{2}+\frac{89881}{13005} x+\frac{121303}{21675}}{\left(x^{4}+x+3\right)^{2}}
$$

$$
\begin{aligned}
& +\frac{\left.\sum_{R=\operatorname{RootOf}\left(Z^{4}+Z+3\right)} \frac{\left(377432_{-} R^{2}-2808656 _R+703551\right) \ln \left(x-Z_{2} R\right)}{4 _R^{3}+1}\right)}{195075}+\frac{30\left(-\frac{16}{765} x^{3}+\frac{64}{765} x^{2}-\frac{1}{765} x-\frac{4}{255}\right)}{x^{4}+x+3} \\
& \left.+\frac{2\left(\sum_{-R=R o o t O f}\left(Z^{4}+Z+3\right)\right.}{} \frac{\left(-16 __{-} R^{2}+128 _R-3\right) \ln \left(x __{-} R\right)}{4 R^{3}+1}\right)+\frac{1}{51}\left(x^{4}+x+3\right)^{3}\left(3 \left(-\frac{255032}{585225} x^{11}+\frac{914728}{585225} x^{10}-\frac{226867}{585225} x^{9}-\frac{701338}{585225} x^{8}\right.\right. \\
& \left.\left.+\frac{236024}{585225} x^{7}+\frac{13501313}{1170450} x^{6}-\frac{2360372}{585225} x^{5}-\frac{1873778}{585225} x^{4}+\frac{10935781}{1170450} x^{3}+\frac{3415123}{130050} x^{2}-\frac{62987}{7225} x-\frac{76253}{21675}\right)\right) \\
& \left.+\sum_{R=\operatorname{RootOf}\left(Z^{4}+Z+3\right)} \frac{\left(-255032 _R^{2}+1829456 _R-680601\right) \ln \left(x __{-} R\right)}{4 _R^{3}+1}\right) \\
& 195075
\end{aligned}
$$

Problem 136: Result more than twice size of optimal antiderivative.

$$
\int\left(\frac{-30 x^{5}+4 x^{3}+10 x-3}{\left(x^{4}+x+3\right)^{3}}-\frac{3\left(4 x^{3}+1\right)\left(-5 x^{6}+x^{4}+5 x^{2}-3 x+2\right)}{\left(x^{4}+x+3\right)^{4}}\right) d x
$$

Optimal(type 1, 27 leaves, ? steps):

$$
\frac{-5 x^{6}+x^{4}+5 x^{2}-3 x+2}{\left(x^{4}+x+3\right)^{3}}
$$

Result(type 1, 111 leaves):

$$
\begin{aligned}
& -\frac{-\frac{34568}{195075} x^{7}+\frac{73672}{195075} x^{6}+\frac{15392}{195075} x^{5}-\frac{60494}{195075} x^{4}-\frac{68792}{195075} x^{3}-\frac{583927}{195075} x^{2}+\frac{3356}{13005} x-\frac{2069}{43350}}{\left(x^{4}+x+3\right)^{2}}+\frac{1}{\left(x^{4}+x+3\right)^{3}}\left(3 \left(-\frac{34568}{585225} x^{11}+\frac{73672}{585225} x^{10}\right.\right. \\
& \left.\left.+\frac{15392}{585225} x^{9}-\frac{95062}{585225} x^{8}-\frac{98824}{585225} x^{7}-\frac{1322894}{585225} x^{6}+\frac{36022}{585225} x^{5}-\frac{129019}{1170450} x^{4}-\frac{790303}{585225} x^{3}-\frac{80674}{65025} x^{2}-\frac{10951}{14450} x+\frac{26831}{43350}\right)\right)
\end{aligned}
$$

Test results for the 266 problems in "1.3.2 Algebraic functions.txt"
Problem 3: Unable to integrate problem.

$$
\int \frac{1}{\left(2^{2 / 3} a^{1 / 3}-b^{1 / 3} x\right) \sqrt{b x^{3}-a}} \mathrm{~d} x
$$

Optimal(type 4, 216 leaves, 4 steps):
$-\frac{2 \operatorname{arctanh}\left(\frac{a^{1 / 6}\left(a^{1 / 3}-2^{1 / 3} b^{1 / 3} x\right) \sqrt{3}}{\sqrt{b x^{3}-a}}\right) \sqrt{3}}{9 b^{1 / 3} \sqrt{a}}$

$$
-\frac{22^{1 / 3}\left(a^{1 / 3}-b^{1 / 3} x\right) \text { EllipticF }\left(\frac{-b^{1 / 3} x+a^{1 / 3}(1+\sqrt{3})}{-b^{1 / 3} x+a^{1 / 3}(1-\sqrt{3})}, 2 \mathrm{I}-\mathrm{I} \sqrt{3}\right) \sqrt{\frac{a^{2 / 3}+a^{1 / 3} b^{1 / 3} x+b^{2 / 3} x^{2}}{\left(-b^{1 / 3} x+a^{1 / 3}(1-\sqrt{3})\right)^{2}}\left(\frac{\sqrt{6}}{2}-\frac{\sqrt{2}}{2}\right) 3^{3 / 4}}}{9 a^{1 / 3} b^{1 / 3} \sqrt{b x^{3}-a} \sqrt{-\frac{a^{1 / 3}\left(a^{1 / 3}-b^{1 / 3} x\right)}{\left(-b^{1 / 3} x+a^{1 / 3}(1-\sqrt{3})\right)^{2}}}}
$$

Result(type 8, 30 leaves):

$$
\int \frac{1}{\left(2^{2 / 3} a^{1 / 3}-b^{1 / 3} x\right) \sqrt{b x^{3}-a}} \mathrm{~d} x
$$

Problem 8: Unable to integrate problem.

$$
\int \frac{1}{(d x+c)\left(d^{3} x^{3}-c^{3}\right)^{1 / 3}} \mathrm{~d} x
$$

Optimal(type 3, 116 leaves, 1 step):

$$
\frac{\ln \left((-d x+c)(d x+c)^{2}\right) 2^{2 / 3}}{8 c d}-\frac{3 \ln \left(d(-d x+c)+2^{2 / 3} d\left(d^{3} x^{3}-c^{3}\right)^{1 / 3}\right) 2^{2 / 3}}{8 c d}+\frac{\arctan \left(\frac{\left(1-\frac{2^{1 / 3}(-d x+c)}{\left.\left(d^{3} x^{3}-c^{3}\right)^{1 / 3}\right) \sqrt{3}}\right.}{3}\right) \sqrt{3} 2^{2 / 3}}{4 c d}
$$

Result(type 8, 25 leaves):

$$
\int \frac{1}{(d x+c)\left(d^{3} x^{3}-c^{3}\right)^{1 / 3}} \mathrm{~d} x
$$

Problem 9: Unable to integrate problem.

$$
\int \frac{1}{(d x+c)\left(d^{3} x^{3}+2 c^{3}\right)^{1 / 3}} \mathrm{~d} x
$$

Optimal(type 3, 162 leaves, 3 steps):
$-\frac{\ln (d x+c)}{2 c d}-\frac{\ln \left(-d x+\left(d^{3} x^{3}+2 c^{3}\right)^{1 / 3}\right)}{4 c d}+\frac{3 \ln \left(d(d x+2 c)-d\left(d^{3} x^{3}+2 c^{3}\right)^{1 / 3}\right)}{4 c d}+\frac{\arctan \left(\frac{\left(1+\frac{2 d x}{\left(d^{3} x^{3}+2 c^{3}\right)^{1 / 3}}\right) \sqrt{3}}{3}\right) \sqrt{3}}{6 c d}$ $-\frac{\arctan \left(\frac{\left(1+\frac{2(d x+2 c)}{\left(d^{3} x^{3}+2 c^{3}\right)^{1 / 3}}\right) \sqrt{3}}{3}\right) \sqrt{3}}{2 c d}$
Result(type 8, 25 leaves):

$$
\int \frac{1}{(d x+c)\left(d^{3} x^{3}+2 c^{3}\right)^{1 / 3}} \mathrm{~d} x
$$

Problem 10: Unable to integrate problem.

$$
\int(d x+c)^{4}\left(b x^{3}+a\right)^{1 / 3} \mathrm{~d} x
$$

Optimal(type 5, 317 leaves, 11 steps):
$\frac{3 a c^{2} d^{2}\left(b x^{3}+a\right)^{1 / 3}}{2 b}+\frac{a d^{4} x^{2}\left(b x^{3}+a\right)^{1 / 3}}{18 b}+\frac{\left(b x^{3}+a\right)^{1 / 3}\left(5 d^{4} x^{5}+24 c d^{3} x^{4}+45 c^{2} d^{2} x^{3}+40 c^{3} d x^{2}+15 c^{4} x\right)}{30}$
$+\frac{a c^{4} x\left(1+\frac{b x^{3}}{a}\right)^{2 / 3} \operatorname{hypergeom}\left(\left[\frac{1}{3}, \frac{2}{3}\right],\left[\frac{4}{3}\right],-\frac{b x^{3}}{a}\right)}{2\left(b x^{3}+a\right)^{2 / 3}}+\frac{a c d^{3} x^{4}\left(1+\frac{b x^{3}}{a}\right)^{2 / 3} \text { hypergeom }\left(\left[\frac{2}{3}, \frac{4}{3}\right],\left[\frac{7}{3}\right],-\frac{b x^{3}}{a}\right)}{5\left(b x^{3}+a\right)^{2 / 3}}$
$-\frac{2 a c^{3} d \ln \left(b^{1 / 3} x-\left(b x^{3}+a\right)^{1 / 3}\right)}{3 b^{2 / 3}}+\frac{a^{2} d^{4} \ln \left(b^{1 / 3} x-\left(b x^{3}+a\right)^{1 / 3}\right)}{18 b^{5 / 3}}-\frac{4 a c^{3} d \arctan \left(\frac{\left(1+\frac{2 b^{1 / 3} x}{\left(b x^{3}+a\right)^{1 / 3}}\right) \sqrt{3}}{3}\right) \sqrt{3}}{9 b^{2 / 3}}$
$+\frac{a^{2} d^{4} \arctan \left(\frac{\left(1+\frac{2 b^{1 / 3} x}{\left(b x^{3}+a\right)^{1 / 3}}\right) \sqrt{3}}{3}\right) \sqrt{3}}{27 b^{5 / 3}}$
Result(type 8, 159 leaves):
$\frac{\left(15 d^{4} x^{5} b+72 c d^{3} x^{4} b+135 c^{2} d^{2} x^{3} b+5 a d^{4} x^{2}+120 b c^{3} d x^{2}+36 a c d^{3} x+45 b c^{4} x+135 c^{2} d^{2} a\right)\left(b x^{3}+a\right)^{1 / 3}}{90 b}$

$$
+\frac{\left(\int-\frac{a\left(10 a d^{4} x-120 b c^{3} d x+36 a c d^{3}-45 b c^{4}\right)}{90 b\left(\left(b x^{3}+a\right)^{2}\right)^{1 / 3}} \mathrm{~d} x\right)\left(\left(b x^{3}+a\right)^{2}\right)^{1 / 3}}{\left(b x^{3}+a\right)^{2 / 3}}
$$

Problem 11: Unable to integrate problem.

$$
\int \frac{(d x+c)^{4}}{\left(b x^{3}+a\right)^{1 / 3}} \mathrm{~d} x
$$

Optimal(type 5, 251 leaves, 10 steps):
$\frac{3 c^{2} d^{2}\left(b x^{3}+a\right)^{2 / 3}}{b}+\frac{4 c d^{3} x\left(b x^{3}+a\right)^{2 / 3}}{3 b}+\frac{2 c^{3} d x^{2}\left(1+\frac{b x^{3}}{a}\right)^{1 / 3} \operatorname{hypergeom}\left(\left[\frac{1}{3}, \frac{2}{3}\right],\left[\frac{5}{3}\right],-\frac{b x^{3}}{a}\right)}{\left(b x^{3}+a\right)^{1 / 3}}$

$$
\begin{aligned}
& +\frac{d^{4} x^{5}\left(1+\frac{b x^{3}}{a}\right)^{1 / 3} \text { hypergeom }\left(\left[\frac{1}{3}, \frac{5}{3}\right],\left[\frac{8}{3}\right],-\frac{b x^{3}}{a}\right)}{5\left(b x^{3}+a\right)^{1 / 3}}-\frac{c^{4} \ln \left(-b^{1 / 3} x+\left(b x^{3}+a\right)^{1 / 3}\right)}{2 b^{1 / 3}}+\frac{2 a c d^{3} \ln \left(-b^{1 / 3} x+\left(b x^{3}+a\right)^{1 / 3}\right)}{3 b^{4 / 3}} \\
& +\frac{c^{4} \arctan \left(\frac{\left(1+\frac{2 b^{1 / 3} x}{\left(b x^{3}+a\right)^{1 / 3}}\right) \sqrt{3}}{3}\right) \sqrt{3}}{3 b^{1 / 3}}-\frac{4 a c d^{3} \arctan \left(\frac{\left(1+\frac{2 b^{1 / 3} x}{\left(b x^{3}+a\right)^{1 / 3}}\right) \sqrt{3}}{3}\right) \sqrt{3}}{9 b^{4 / 3}}
\end{aligned}
$$

Result(type 8, 82 leaves):

$$
\frac{d^{2}\left(3 d^{2} x^{2}+16 c d x+36 c^{2}\right)\left(b x^{3}+a\right)^{2 / 3}}{12 b}+\int-\frac{3 a d^{4} x-24 b c^{3} d x+8 a c d^{3}-6 b c^{4}}{6 b\left(b x^{3}+a\right)^{1 / 3}} \mathrm{~d} x
$$

Problem 12: Unable to integrate problem.

$$
\int \frac{1}{(d x+c)^{3}\left(b x^{3}+a\right)^{1 / 3}} \mathrm{~d} x
$$

Optimal(type 6, 1346 leaves, 32 steps):

$$
\begin{aligned}
& \frac{3 c^{4} d^{2}\left(b x^{3}+a\right)^{2 / 3}}{2\left(-a d^{3}+b c^{3}\right)\left(d^{3} x^{3}+c^{3}\right)^{2}}-\frac{3 c^{3} d^{3} x\left(b x^{3}+a\right)^{2 / 3}}{2\left(-a d^{3}+b c^{3}\right)\left(d^{3} x^{3}+c^{3}\right)^{2}}+\frac{4 b c^{4} d^{2}\left(b x^{3}+a\right)^{2 / 3}}{3\left(-a d^{3}+b c^{3}\right)^{2}\left(d^{3} x^{3}+c^{3}\right)}-\frac{c d^{2}\left(-3 a d^{3}+b c^{3}\right)\left(b x^{3}+a\right)^{2 / 3}}{3\left(-a d^{3}+b c^{3}\right)^{2}\left(d^{3} x^{3}+c^{3}\right)} \\
& +\frac{d^{3}\left(-7 a d^{3}+3 b c^{3}\right) x\left(b x^{3}+a\right)^{2 / 3}}{18\left(-a d^{3}+b c^{3}\right)^{2}\left(d^{3} x^{3}+c^{3}\right)}-\frac{d^{3}\left(-5 a d^{3}+9 b c^{3}\right) x\left(b x^{3}+a\right)^{2 / 3}}{18\left(-a d^{3}+b c^{3}\right)^{2}\left(d^{3} x^{3}+c^{3}\right)}-\frac{7 d^{3}\left(a d^{3}+3 b c^{3}\right) x\left(b x^{3}+a\right)^{2 / 3}}{18\left(-a d^{3}+b c^{3}\right)^{2}\left(d^{3} x^{3}+c^{3}\right)} \\
& -\frac{3 d x^{2}\left(1+\frac{b x^{3}}{a}\right)^{1 / 3} \text { AppellF1 }\left(\frac{2}{3}, \frac{1}{3}, 3, \frac{5}{3},-\frac{b x^{3}}{a},-\frac{d^{3} x^{3}}{c^{3}}\right)}{2 c^{4}\left(b x^{3}+a\right)^{1 / 3}}+\frac{6 d^{4} x^{5}\left(1+\frac{b x^{3}}{a}\right)^{1 / 3} \text { AppellF1 }\left(\frac{5}{3}, \frac{1}{3}, 3, \frac{8}{3},-\frac{b x^{3}}{a},-\frac{d^{3} x^{3}}{c^{3}}\right)}{5 c^{7}\left(b x^{3}+a\right)^{1 / 3}} \\
& +\frac{2 b^{2} c^{4} \ln \left(d^{3} x^{3}+c^{3}\right)}{9\left(-a d^{3}+b c^{3}\right)^{7 / 3}}+\frac{a^{2} d^{6} \ln \left(d^{3} x^{3}+c^{3}\right)}{27 c^{2}\left(-a d^{3}+b c^{3}\right)^{7 / 3}}-\frac{b c\left(-3 a d^{3}+b c^{3}\right) \ln \left(d^{3} x^{3}+c^{3}\right)}{18\left(-a d^{3}+b c^{3}\right)^{7 / 3}}+\frac{7 a d^{3}\left(-a d^{3}+3 b c^{3}\right) \ln \left(d^{3} x^{3}+c^{3}\right)}{54 c^{2}\left(-a d^{3}+b c^{3}\right)^{7 / 3}} \\
& +\frac{\left(5 a^{2} d^{6}-12 a b c^{3} d^{3}+9 b^{2} c^{6}\right) \ln \left(d^{3} x^{3}+c^{3}\right)}{54 c^{2}\left(-a d^{3}+b c^{3}\right)^{7 / 3}}-\frac{a^{2} d^{6} \ln \left(\frac{\left(-a d^{3}+b c^{3}\right)^{1 / 3} x}{c}-\left(b x^{3}+a\right)^{1 / 3}\right)}{9 c^{2}\left(-a d^{3}+b c^{3}\right)^{7 / 3}} \\
& -\frac{7 a d^{3}\left(-a d^{3}+3 b c^{3}\right) \ln \left(\frac{\left(-a d^{3}+b c^{3}\right)^{1 / 3} x}{c}-\left(b x^{3}+a\right)^{1 / 3}\right)}{18 c^{2}\left(-a d^{3}+b c^{3}\right)^{7 / 3}}-\frac{\left(5 a^{2} d^{6}-12 a b c^{3} d^{3}+9 b^{2} c^{6}\right) \ln \left(\frac{\left(-a d^{3}+b c^{3}\right)^{1 / 3} x}{c}-\left(b x^{3}+a\right)^{1 / 3}\right)}{18 c^{2}\left(-a d^{3}+b c^{3}\right)^{7 / 3}} \\
& -\frac{2 b^{2} c^{4} \ln \left(\left(-a d^{3}+b c^{3}\right)^{1 / 3}+d\left(b x^{3}+a\right)^{1 / 3}\right)}{3\left(-a d^{3}+b c^{3}\right)^{7 / 3}}+\frac{b c\left(-3 a d^{3}+b c^{3}\right) \ln \left(\left(-a d^{3}+b c^{3}\right)^{1 / 3}+d\left(b x^{3}+a\right)^{1 / 3}\right)}{6\left(-a d^{3}+b c^{3}\right)^{7 / 3}}
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{2 a^{2} d^{6} \arctan \left(\frac{\left.\left(1+\frac{2\left(-a d^{3}+b c^{3}\right)^{1 / 3} x}{c\left(b x^{3}+a\right)^{1 / 3}}\right) \sqrt{3}\right)}{3}\right) \sqrt{3}}{27 c^{2}\left(-a d^{3}+b c^{3}\right)^{7 / 3}}+\frac{7 a d^{3}\left(-a d^{3}+3 b c^{3}\right) \arctan \left(\frac{\left(1+\frac{2\left(-a d^{3}+b c^{3}\right)^{1 / 3} x}{c\left(b x^{3}+a\right)^{1 / 3}}\right) \sqrt{3}}{3}\right) \sqrt{3}}{27 c^{2}\left(-a d^{3}+b c^{3}\right)^{7 / 3}} \\
& \left.+\frac{\left(5 a^{2} d^{6}-12 a b c^{3} d^{3}+9 b^{2} c^{6}\right) \arctan \left(\frac{\left.\left(1+\frac{2\left(-a d^{3}+b c^{3}\right)^{1 / 3} x}{c\left(b x^{3}+a\right)^{1 / 3}}\right) \sqrt{3}\right)}{3}\right) \sqrt{3}}{27 c^{2}\left(-a d^{3}+b c^{3}\right)^{7 / 3}}-\frac{4 b^{2} c^{4} \arctan \left(\frac{2 d\left(b x^{3}+a\right)^{1 / 3}}{\left(-a d^{3}+b c^{3}\right)^{1 / 3}}\right) \sqrt{3}}{3}\right) \sqrt{\left(1-\frac{2 d}{3}\right.} \\
& +\frac{b c\left(-3 a d^{3}+b c^{3}\right) \arctan \left(\frac{\left(1-\frac{2 d\left(b x^{3}+a\right)^{1 / 3}}{\left(-a d^{3}+b c^{3}\right)^{1 / 3}}\right) \sqrt{3}}{3}\right) \sqrt{3}}{9\left(-a d^{3}+b c^{3}\right)^{7 / 3}}
\end{aligned}
$$

Result(type 8, 19 leaves):

$$
\int \frac{1}{(d x+c)^{3}\left(b x^{3}+a\right)^{1 / 3}} \mathrm{~d} x
$$

Problem 13: Unable to integrate problem.

$$
\int \frac{d x+c}{\left(b x^{3}+a\right)^{2 / 3}} d x
$$

Optimal(type 5, 96 leaves, 5 steps):

$$
\frac{c x\left(1+\frac{b x^{3}}{a}\right)^{2 / 3} \text { hypergeom }\left(\left[\frac{1}{3}, \frac{2}{3}\right],\left[\frac{4}{3}\right],-\frac{b x^{3}}{a}\right)}{\left(b x^{3}+a\right)^{2 / 3}}-\frac{d \ln \left(b^{1 / 3} x-\left(b x^{3}+a\right)^{1 / 3}\right)}{2 b^{2 / 3}}-\frac{d \arctan \left(\frac{\left(1+\frac{2 b^{1 / 3} x}{\left(b x^{3}+a\right)^{1 / 3}}\right) \sqrt{3}}{3}\right) \sqrt{3}}{3 b^{2 / 3}}
$$

Result(type 8, 17 leaves):

$$
\int \frac{d x+c}{\left(b x^{3}+a\right)^{2 / 3}} \mathrm{~d} x
$$

Problem 14: Unable to integrate problem.

$$
\int \frac{1}{(d x+c)^{2}\left(b x^{3}+a\right)^{2 / 3}} \mathrm{~d} x
$$

Optimal(type 6, 669 leaves, 18 steps):

$$
\begin{aligned}
& \frac{c^{2} d^{2}\left(b x^{3}+a\right)^{1 / 3}}{\left(-a d^{3}+b c^{3}\right)\left(d^{3} x^{3}+c^{3}\right)}+\frac{d^{4} x^{2}\left(b x^{3}+a\right)^{1 / 3}}{\left(-a d^{3}+b c^{3}\right)\left(d^{3} x^{3}+c^{3}\right)}+\frac{x\left(1+\frac{b x^{3}}{a}\right)^{2 / 3} \text { AppellF1 }\left(\frac{1}{3}, \frac{2}{3}, 2, \frac{4}{3},-\frac{b x^{3}}{a},-\frac{d^{3} x^{3}}{c^{3}}\right)}{c^{2}\left(b x^{3}+a\right)^{2 / 3}} \\
& -\frac{d^{3} x^{4}\left(1+\frac{b x^{3}}{a}\right)^{2 / 3} \operatorname{AppellF1}\left(\frac{4}{3}, \frac{2}{3}, 2, \frac{7}{3},-\frac{b x^{3}}{a},-\frac{d^{3} x^{3}}{c^{3}}\right)}{2 c^{5}\left(b x^{3}+a\right)^{2 / 3}}-\frac{b c^{2} d \ln \left(d^{3} x^{3}+c^{3}\right)}{3\left(-a d^{3}+b c^{3}\right)^{5 / 3}}-\frac{a d^{4} \ln \left(d^{3} x^{3}+c^{3}\right)}{9 c\left(-a d^{3}+b c^{3}\right)^{5 / 3}}-\frac{d\left(-a d^{3}+3 b c^{3}\right) \ln \left(d^{3} x^{3}+c^{3}\right)}{9 c\left(-a d^{3}+b c^{3}\right)^{5 / 3}} \\
& +\frac{a d^{4} \ln \left(\frac{\left(-a d^{3}+b c^{3}\right)^{1 / 3} x}{c}-\left(b x^{3}+a\right)^{1 / 3}\right)}{3 c\left(-a d^{3}+b c^{3}\right)^{5 / 3}}+\frac{d\left(-a d^{3}+3 b c^{3}\right) \ln \left(\frac{\left(-a d^{3}+b c^{3}\right)^{1 / 3} x}{c}-\left(b x^{3}+a\right)^{1 / 3}\right)}{3 c\left(-a d^{3}+b c^{3}\right)^{5 / 3}} \\
& +\frac{b c^{2} d \ln \left(\left(-a d^{3}+b c^{3}\right)^{1 / 3}+d\left(b x^{3}+a\right)^{1 / 3}\right)}{\left(-a d^{3}+b c^{3}\right)^{5 / 3}}+\frac{2 a d^{4} \arctan \left(\frac{\left(1+\frac{2\left(-a d^{3}+b c^{3}\right)^{1 / 3} x}{c\left(b x^{3}+a\right)^{1 / 3}}\right) \sqrt{3}}{3}\right) \sqrt{3}}{9 c\left(-a d^{3}+b c^{3}\right)^{5 / 3}} \\
& +\frac{\left.2 d\left(-a d^{3}+3 b c^{3}\right) \arctan \left(\frac{\left(1+\frac{2\left(-a d^{3}+b c^{3}\right)^{1 / 3} x}{c\left(b x^{3}+a\right)^{1 / 3}}\right) \sqrt{3}}{3}\right) \sqrt{9 c\left(-a d^{3}+b c^{3}\right)^{5 / 3}}-\frac{2 b c^{2} d \arctan \left(\frac{2 d\left(b x^{3}+a\right)^{1 / 3}}{\left(-a d^{3}+b c^{3}\right)^{1 / 3}}\right) \sqrt{3}}{3\left(-a d^{3}+b c^{3}\right)^{5 / 3}}\right) \sqrt{3}}{9}
\end{aligned}
$$

Result(type 8, 19 leaves):

$$
\int \frac{1}{(d x+c)^{2}\left(b x^{3}+a\right)^{2 / 3}} \mathrm{~d} x
$$

Problem 15: Result unnecessarily involves higher level functions and more than twice size of optimal antiderivative.

$$
\int \frac{2^{2 / 3}+2 x}{\left(2^{2 / 3}-x\right) \sqrt{x^{3}-1}} d x
$$

Optimal(type 3, 28 leaves, 2 steps):

$$
-\frac{22^{2 / 3} \operatorname{arctanh}\left(\frac{\left(1-2^{1 / 3} x\right) \sqrt{3}}{\sqrt{x^{3}-1}}\right) \sqrt{3}}{3}
$$

Result(type 4, 261 leaves):
$-\frac{4\left(-\frac{3}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right) \sqrt{\frac{-1+x}{-\frac{3}{2}-\frac{\mathrm{I} \sqrt{3}}{2}}} \sqrt{\frac{x+\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}}{\frac{3}{2}-\frac{\mathrm{I} \sqrt{3}}{2}} \sqrt{\frac{x+\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}}{\frac{3}{2}+\frac{\mathrm{I} \sqrt{3}}{2}}} \text { EllipticF }\left(\sqrt{\frac{-1+x}{-\frac{3}{2}-\frac{\mathrm{I} \sqrt{3}}{2}}}, \sqrt{\frac{\frac{3}{2}+\frac{\mathrm{I} \sqrt{3}}{2}}{\frac{3}{2}-\frac{\mathrm{I} \sqrt{3}}{2}}}\right)}}{\sqrt{x^{3}-1}}$

$$
\begin{aligned}
& -\frac{1}{\sqrt{x^{3}-1}\left(-2^{2 / 3}+1\right)}\left(6 2 ^ { 2 / 3 } (- \frac { 3 } { 2 } - \frac { \mathrm { I } \sqrt { 3 } } { 2 }) \sqrt { \frac { - 1 + x } { - \frac { 3 } { 2 } - \frac { \mathrm { I } \sqrt { 3 } } { 2 } } } \sqrt { \frac { x + \frac { 1 } { 2 } - \frac { \mathrm { I } \sqrt { 3 } } { 2 } } { \frac { 3 } { 2 } - \frac { \mathrm { I } \sqrt { 3 } } { 2 } } } \sqrt { \frac { x + \frac { 1 } { 2 } + \frac { \mathrm { I } \sqrt { 3 } } { 2 } } { \frac { 3 } { 2 } + \frac { \mathrm { I } \sqrt { 3 } } { 2 } } } \text { EllipticPi} \left(\sqrt{\frac{-1+x}{-\frac{3}{2}-\frac{\mathrm{I} \sqrt{3}}{2}}}\right.\right. \\
& \left.\frac{\frac{3}{2}+\frac{\mathrm{I} \sqrt{3}}{2}}{-2^{2} / 3}, \sqrt{\frac{\frac{3}{2}+\frac{\mathrm{I} \sqrt{3}}{2}}{\frac{3}{2}-\frac{\mathrm{I} \sqrt{3}}{2}}}\right)
\end{aligned}
$$

Problem 16: Unable to integrate problem.

$$
\int \frac{2^{2 / 3} a^{1 / 3}-2 b^{1 / 3} x}{\left(2^{2 / 3} a^{1 / 3}+b^{1 / 3} x\right) \sqrt{b x^{3}+a}} \mathrm{~d} x
$$

Optimal(type 3, 43 leaves, 2 steps):

$$
\frac{22^{2 / 3} \arctan \left(\frac{a^{1 / 6}\left(a^{1 / 3}+2^{1 / 3} b^{1 / 3} x\right) \sqrt{3}}{\sqrt{b x^{3}+a}}\right) \sqrt{3}}{3 a^{1 / 6} b^{1 / 3}}
$$

Result(type 8, 41 leaves):

$$
\int \frac{2^{2 / 3} a^{1 / 3}-2 b^{1 / 3} x}{\left(2^{2 / 3} a^{1 / 3}+b^{1 / 3} x\right) \sqrt{b x^{3}+a}} \mathrm{~d} x
$$

Problem 17: Unable to integrate problem.

$$
\int \frac{2^{2 / 3} a^{1 / 3}+2 b^{1 / 3} x}{\left(2^{2 / 3} a^{1 / 3}-b^{1 / 3} x\right) \sqrt{b x^{3}-a}} \mathrm{~d} x
$$

Optimal(type 3, 46 leaves, 2 steps):

$$
-\frac{22^{2 / 3} \operatorname{arctanh}\left(\frac{a^{1 / 6}\left(a^{1 / 3}-2^{1 / 3} b^{1 / 3} x\right) \sqrt{3}}{\sqrt{b x^{3}-a}}\right) \sqrt{3}}{3 a^{1 / 6} b^{1 / 3}}
$$

Result(type 8, 44 leaves):

$$
\int \frac{2^{2 / 3} a^{1 / 3}+2 b^{1 / 3} x}{\left(2^{2 / 3} a^{1 / 3}-b^{1 / 3} x\right) \sqrt{b x^{3}-a}} \mathrm{~d} x
$$

Problem 18: Result more than twice size of optimal antiderivative.

$$
\int \frac{f x+e}{\left(2^{2 / 3}+x\right) \sqrt{x^{3}+1}} \mathrm{~d} x
$$

Optimal(type 4, 126 leaves, 4 steps):
$\frac{2\left(e-2^{2 / 3} f\right) \arctan \left(\frac{\left(1+2^{1 / 3} x\right) \sqrt{3}}{\sqrt{x^{3}+1}}\right) \sqrt{3}}{9}+\frac{2\left(2^{1 / 3} e+f\right)(1+x) \operatorname{EllipticF}\left(\frac{1+x-\sqrt{3}}{1+x+\sqrt{3}}, \mathrm{I} \sqrt{3}+2 \mathrm{I}\right)\left(\frac{\sqrt{6}}{2}+\frac{\sqrt{2}}{2}\right) \sqrt{\frac{x^{2}-x+1}{(1+x+\sqrt{3})^{2}} 3^{3 / 4}}}{9 \sqrt{x^{3}+1} \sqrt{\frac{1+x}{(1+x+\sqrt{3})^{2}}}}$
Result(type 4, 263 leaves):
$2 f\left(\frac{3}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right) \sqrt{\frac{1+x}{\frac{3}{2}-\frac{\mathrm{I} \sqrt{3}}{2}}} \sqrt{\frac{x-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}}{-\frac{3}{2}-\frac{\mathrm{I} \sqrt{3}}{2}}} \sqrt{\frac{x-\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}}{-\frac{3}{2}+\frac{\mathrm{I} \sqrt{3}}{2}}}$ EllipticF $\left.\sqrt{\frac{1+x}{\frac{3}{2}-\frac{\mathrm{I} \sqrt{3}}{2}}, \sqrt{-\frac{3}{2}} \sqrt{-\frac{3}{2}-\frac{\mathrm{I} \sqrt{3}}{2}} \sqrt{2}} \sqrt{\frac{\mathrm{I} \sqrt{3}}{2}}\right)$

$$
\sqrt{x^{3}+1}
$$

$$
\left.\frac{-\frac{3}{2}+\frac{\mathrm{I} \sqrt{3}}{2}}{2^{2 / 3}-1},\left(\frac{-\frac{3}{2}+\frac{\mathrm{I} \sqrt{3}}{2}}{-\frac{3}{2}-\frac{\mathrm{I} \sqrt{3}}{2}}\right)\right)
$$

Problem 20: Result more than twice size of optimal antiderivative.

$$
\int \frac{f x+e}{(d x+c) \sqrt{4 d^{3} x^{3}+c^{3}}} \mathrm{~d} x
$$

Optimal(type 4, 216 leaves, 4 steps):

$$
+\frac{2^{1 / 3}(c f+2 d e)\left(c+2^{2 / 3} d x\right) \text { EllipticF }\left(\frac{2^{2 / 3} d x+c(1-\sqrt{3})}{2^{2 / 3} d x+c(1+\sqrt{3})}, \mathrm{I} \sqrt{3}+2 \mathrm{I}\right)\left(\frac{\sqrt{6}}{2}+\frac{\sqrt{2}}{2}\right) \sqrt{\frac{c^{2}-2^{2 / 3} c d x+22^{1 / 3} d^{2} x^{2}}{\left(2^{2 / 3} d x+c(1+\sqrt{3})\right)^{2}} 3^{3 / 4}}}{9 c d^{2} \sqrt{4 d^{3} x^{3}+c^{3}} \sqrt{\frac{c\left(c+2^{2 / 3} d x\right)}{\left(2^{2 / 3} d x+c(1+\sqrt{3})\right)^{2}}}}
$$

Result(type 4, 899 leaves):

$$
\frac{1}{d \sqrt{4 d^{3} x^{3}+c^{3}}}\left(2 f \left(\frac{\left(\frac{2^{1 / 3}}{4}-\frac{\mathrm{I} \sqrt{3} 2^{1 / 3}}{4}\right) c}{d}\right.\right.
$$

$$
\left.-\frac{\left(\frac{2^{1 / 3}}{4}+\frac{\mathrm{I} \sqrt{3} 2^{1 / 3}}{4}\right) c}{d}\right)
$$

$$
\begin{aligned}
& \sqrt{\frac{x-\frac{\left(\frac{2^{1 / 3}}{4}+\frac{\mathrm{I} \sqrt{3} 2^{1 / 3}}{4}\right) c}{\left(\frac{2^{1 / 3}}{4}-\frac{\mathrm{I} \sqrt{3} 2^{1 / 3}}{4}\right) c}}{\frac{d}{4}-\frac{\left(\frac{2^{1 / 3}}{4}+\frac{\mathrm{I} \sqrt{3} 2^{1 / 3}}{4}\right) c}{d}} \sqrt{\frac{x+\frac{2^{1 / 3} c}{2 d}}{\frac{\left(\frac{2^{1 / 3}}{4}+\frac{\mathrm{I} \sqrt{3} 2^{1 / 3}}{4}\right) c}{d}+\frac{2^{1 / 3} c}{2 d}}} \sqrt{\frac{(1)}{d}}}
\end{aligned}
$$

$$
\sqrt{\frac{x-\frac{\left(\frac{2^{1 / 3}}{4}+\frac{\mathrm{I} \sqrt{3} 2^{1 / 3}}{4}\right) c}{d}}{\frac{\left(\frac{2^{1 / 3}}{4}-\frac{\mathrm{I} \sqrt{3} 2^{1 / 3}}{4}\right) c}{d}-\frac{\left(\frac{2^{1 / 3}}{4}+\frac{\mathrm{I} \sqrt{3} 2^{1 / 3}}{4}\right) c}{d}} .}
$$

$$
\frac{x+\frac{2^{1 / 3} c}{2 d}}{\frac{\left(\frac{2^{1 / 3}}{4}+\frac{\mathrm{I} \sqrt{3} 2^{1 / 3}}{4}\right) c}{d}+\frac{2^{1 / 3} c}{2 d}}
$$

$$
\frac{\left(\frac{2^{1 / 3}}{4}+\frac{\mathrm{I} \sqrt{3} 2^{1 / 3}}{4}\right) c}{d}-\frac{\left(\frac{2^{1 / 3}}{4}-\frac{\mathrm{I} \sqrt{3} 2^{1 / 3}}{4}\right) c}{d}, \quad\left(\frac{\left(\frac{\left(\frac{2^{1 / 3}}{4}+\frac{\mathrm{I} \sqrt{3} 2^{1 / 3}}{4}\right) c}{d}-\frac{\left(\frac{2^{1 / 3}}{4}-\frac{\mathrm{I} \sqrt{3} 2^{1 / 3}}{4}\right) c}{d}\right.}{\frac{\left(\frac{2^{1 / 3}}{4}+\frac{\mathrm{I} \sqrt{3} 2^{1 / 3}}{4}\right) c}{d}+\frac{c}{d}}\right)
$$

$$
\begin{aligned}
& +d e)\left(\frac{\left(\frac{2^{1 / 3}}{4}-\frac{\mathrm{I} \sqrt{3} 2^{1 / 3}}{4}\right) c}{d}\right. \\
& \left.-\frac{\left(\frac{2^{1 / 3}}{4}+\frac{\mathrm{I} \sqrt{3} 2^{1 / 3}}{4}\right) c}{d}\right)
\end{aligned}
$$

Problem 21: Result more than twice size of optimal antiderivative.

$$
\int \frac{x}{\left(2^{2 / 3}+x\right) \sqrt{x^{3}+1}} d x
$$

Optimal(type 4, 114 leaves, 4 steps):

Result(type 4, 257 leaves):

$$
\begin{aligned}
& \frac{-\frac{3}{2}+\frac{\mathrm{I} \sqrt{3}}{2}}{2^{2 / 3}-1}, \quad\left(\frac{-\frac{3}{2}+\frac{\mathrm{I} \sqrt{3}}{2}}{-\frac{3}{2}-\frac{\mathrm{I} \sqrt{3}}{2}}\right)
\end{aligned}
$$

Problem 23: Unable to integrate problem.

$$
\int \frac{x}{\left(2^{2 / 3} a^{1 / 3}-b^{1 / 3} x\right) \sqrt{-b x^{3}+a}} \mathrm{~d} x
$$

Optimal(type 4, 206 leaves, 4 steps):

$$
+\frac{2\left(a^{1 / 3}-b^{1 / 3} x\right) \text { EllipticF }\left(\frac{-b^{1 / 3} x+a^{1 / 3}(1-\sqrt{3})}{-b^{1 / 3} x+a^{1 / 3}(1+\sqrt{3})}, \mathrm{I} \sqrt{3}+2 \mathrm{I}\right)\left(\frac{\sqrt{6}}{2}+\frac{\sqrt{2}}{2}\right) \sqrt{\frac{a^{2 / 3}+a^{1 / 3} b^{1 / 3} x+b^{2 / 3} x^{2}}{\left(-b^{1 / 3} x+a^{1 / 3}(1+\sqrt{3})\right)^{2}}} 3^{3 / 4}}{9 b^{2 / 3} \sqrt{-b x^{3}+a} \sqrt{\frac{a^{1 / 3}\left(a^{1 / 3}-b^{1 / 3} x\right)}{\left(-b^{1 / 3} x+a^{1 / 3}(1+\sqrt{3})\right)^{2}}}}
$$

Result(type 8, 30 leaves):

$$
\int \frac{x}{\left(2^{2 / 3} a^{1 / 3}-b^{1 / 3} x\right) \sqrt{-b x^{3}+a}} \mathrm{~d} x
$$

Problem 24: Unable to integrate problem.

$$
\int \frac{a^{1 / 3}-b^{1 / 3} x}{\left(2 a^{1 / 3}+b^{1 / 3} x\right) \sqrt{b x^{3}-a}} \mathrm{~d} x
$$

Optimal(type 3, 37 leaves, 2 steps):

$$
-\frac{2 \arctan \left(\frac{\left(a^{1 / 3}-b^{1 / 3} x\right)^{2}}{3 a^{1 / 6} \sqrt{b x^{3}-a}}\right)}{3 a^{1 / 6} b^{1 / 3}}
$$

Result(type 8, 37 leaves):

$$
\int \frac{a^{1 / 3}-b^{1 / 3} x}{\left(2 a^{1 / 3}+b^{1 / 3} x\right) \sqrt{b x^{3}-a}} \mathrm{~d} x
$$

Problem 25: Unable to integrate problem.

$$
\int \frac{a^{1 / 3}+b^{1 / 3} x}{\left(2 a^{1 / 3}-b^{1 / 3} x\right) \sqrt{-b x^{3}-a}} \mathrm{~d} x
$$

Optimal(type 3, 37 leaves, 2 steps):

$$
\frac{2 \arctan \left(\frac{\left(a^{1 / 3}+b^{1 / 3} x\right)^{2}}{3 a^{1 / 6} \sqrt{-b x^{3}-a}}\right)}{3 a^{1 / 6} b^{1 / 3}}
$$

Result(type 8, 38 leaves):

$$
\int \frac{a^{1 / 3}+b^{1 / 3} x}{\left(2 a^{1 / 3}-b^{1 / 3} x\right) \sqrt{-b x^{3}-a}} \mathrm{~d} x
$$

Problem 26: Result more than twice size of optimal antiderivative.

$$
\int \frac{f x+e}{(d x+c) \sqrt{-8 d^{3} x^{3}+c^{3}}} \mathrm{~d} x
$$

Optimal(type 4, 192 leaves, 4 steps):
$-\frac{2(-c f+d e) \operatorname{arctanh}\left(\frac{(-2 d x+c)^{2}}{3 \sqrt{c} \sqrt{-8 d^{3} x^{3}+c^{3}}}\right)}{9 c^{3 / 2 d^{2}}}$

$$
-\frac{(c f+2 d e)(-2 d x+c) \text { EllipticF }\left(\frac{-2 d x+c(1-\sqrt{3})}{-2 d x+c(1+\sqrt{3})}, \mathrm{I} \sqrt{3}+2 \mathrm{I}\right)\left(\frac{\sqrt{6}}{2}+\frac{\sqrt{2}}{2}\right) \sqrt{\frac{4 d^{2} x^{2}+2 c d x+c^{2}}{(-2 d x+c(1+\sqrt{3}))^{2}}} 3^{3 / 4}}{9 c d^{2} \sqrt{-8 d^{3} x^{3}+c^{3}} \sqrt{\frac{c(-2 d x+c)}{(-2 d x+c(1+\sqrt{3}))^{2}}}}
$$

Result(type 4, 660 leaves):
$\frac{1}{d \sqrt{-8 d^{3} x^{3}+c^{3}}}\left(2 f\left(\frac{\left(-\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}\right) c}{2 d}\right.\right.$

$$
\left.-\frac{\left(-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right) c}{2 d}\right)
$$

$$
\begin{aligned}
& +\frac{1}{d^{2} \sqrt{-8 d^{3} x^{3}+c^{3}}\left(\frac{\left(-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right) c}{2 d}+\frac{c}{d}\right)}\left(2 (- c f + d e) \left(\frac{\left(-\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}\right) c}{2 d}\right.\right. \\
& \left.-\frac{\left(-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right) c}{2 d}\right)
\end{aligned}
$$

Problem 27: Result more than twice size of optimal antiderivative.

$$
\int \frac{x}{(2-x) \sqrt{x^{3}+1}} d x
$$

Optimal(type 4, 104 leaves, 4 steps):

$$
\frac{4 \operatorname{arctanh}\left(\frac{(1+x)^{2}}{3 \sqrt{x^{3}+1}}\right)}{9}-\frac{2(1+x) \text { EllipticF }\left(\frac{1+x-\sqrt{3}}{1+x+\sqrt{3}}, \mathrm{I} \sqrt{3}+2 \mathrm{I}\right)\left(\frac{\sqrt{6}}{2}+\frac{\sqrt{2}}{2}\right) \sqrt{\frac{x^{2}-x+1}{(1+x+\sqrt{3})^{2}}} 3^{3 / 4}}{9 \sqrt{x^{3}+1} \sqrt{\frac{1+x}{(1+x+\sqrt{3})^{2}}}}
$$

Result(type 4, 239 leaves):

Problem 28: Result more than twice size of optimal antiderivative.

$$
\int \frac{x}{(d x+c) \sqrt{-8 d^{3} x^{3}+c^{3}}} \mathrm{~d} x
$$

Optimal(type 4, 173 leaves, 4 steps):

$$
\frac{2 \operatorname{arctanh}\left(\frac{(-2 d x+c)^{2}}{3 \sqrt{c} \sqrt{-8 d^{3} x^{3}+c^{3}}}\right)}{9 d^{2} \sqrt{c}}-\frac{(-2 d x+c) \text { EllipticF }\left(\frac{-2 d x+c(1-\sqrt{3})}{-2 d x+c(1+\sqrt{3})}, \mathrm{I} \sqrt{3}+2 \mathrm{I}\right)\left(\frac{\sqrt{6}}{2}+\frac{\sqrt{2}}{2}\right) \sqrt{\frac{4 d^{2} x^{2}+2 c d x+c^{2}}{(-2 d x+c(1+\sqrt{3}))^{2}} 3^{3} / 4}}{9 d^{2} \sqrt{-8 d^{3} x^{3}+c^{3}} \sqrt{\frac{c(-2 d x+c)}{(-2 d x+c(1+\sqrt{3}))^{2}}}}
$$

Result(type 4, 652 leaves):
$\frac{1}{d \sqrt{-8 d^{3} x^{3}+c^{3}}}\left(2\left(\frac{\left(-\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}\right) c}{2 d}\right.\right.$

$$
\left.-\frac{\left(-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right) c}{2 d}\right)
$$

$$
\begin{aligned}
& \sqrt{\left.\frac{x-\frac{\left(-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right) c}{2 d}}{\frac{\left(-\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}\right) c}{2 d}-\frac{\left(-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right) c}{2 d}}, \sqrt{\frac{\left(-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right) c}{2 d}-\frac{\left(-\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}\right) c}{2 d}} \sqrt{\frac{\left(-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right) c}{2 d}-\frac{c}{2 d}}\right)} \\
& -\frac{1}{d^{2} \sqrt{-8 d^{3} x^{3}+c^{3}}\left(\frac{\left(-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right) c}{2 d}+\frac{c}{d}\right)}\left(2 c \left(\frac{\left(-\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}\right) c}{2 d}\right.\right. \\
& \left.-\frac{\left(-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right) c}{2 d}\right)
\end{aligned}
$$

Problem 29: Result unnecessarily involves higher level functions and more than twice size of optimal antiderivative

$$
\int \frac{1+x+\sqrt{3}}{(1+x-\sqrt{3}) \sqrt{x^{3}+1}} \mathrm{~d} x
$$

Optimal(type 3, 32 leaves, 2 steps):

$$
-\frac{2 \operatorname{arctanh}\left(\frac{(1+x) \sqrt{-3+2 \sqrt{3}}}{\sqrt{x^{3}+1}}\right)}{\sqrt{-3+2 \sqrt{3}}}
$$

Result(type 4, 244 leaves):

$$
\left.\begin{array}{l}
-\frac{1}{\sqrt{x^{3}+1}}\left(4\left(\frac{3}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right) \sqrt{\frac{1+x}{\frac{3}{2}-\frac{\mathrm{I} \sqrt{3}}{2}}} \sqrt{\frac{x-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}}{-\frac{3}{2}-\frac{\mathrm{I} \sqrt{3}}{2}}} \sqrt{\frac{x-\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}}{-\frac{3}{2}+\frac{\mathrm{I} \sqrt{3}}{2}}} \text { EllipticPi } \sqrt{\frac{1+x}{\frac{3}{2}-\frac{\mathrm{I} \sqrt{3}}{2}}}\right. \\
-\frac{\left(-\frac{3}{2}+\frac{\mathrm{I} \sqrt{3}}{2}\right) \sqrt{3}}{3}, \sqrt{-\frac{3}{2}+\frac{\mathrm{I} \sqrt{3}}{2}} \\
-\frac{3}{2}-\frac{\mathrm{I} \sqrt{3}}{2}
\end{array}\right) .
$$

Problem 30: Result unnecessarily involves higher level functions and more than twice size of optimal antiderivative.

$$
\int \frac{1-x+\sqrt{3}}{(1-x-\sqrt{3}) \sqrt{-x^{3}+1}} \mathrm{~d} x
$$

Optimal(type 3, 36 leaves, 2 steps):

$$
\frac{2 \operatorname{arctanh}\left(\frac{(1-x) \sqrt{-3+2 \sqrt{3}}}{\sqrt{-x^{3}+1}}\right)}{\sqrt{-3+2 \sqrt{3}}}
$$

Result(type 4, 242 leaves):

$$
-\underline{2 \mathrm{I} \sqrt{3} \sqrt{\mathrm{I}\left(x+\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right) \sqrt{3}} \sqrt{\frac{-1+x}{-\frac{3}{2}+\frac{\mathrm{I} \sqrt{3}}{2}}} \sqrt{-\mathrm{I}\left(x+\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}\right) \sqrt{3}}} \operatorname{EllipticF}\left(\sqrt{3} \sqrt{\mathrm{I}\left(x+\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right) \sqrt{3}}{ }^{3}, \sqrt{\left.\frac{\mathrm{I} \sqrt{3}}{-\frac{3}{2}+\frac{\mathrm{I} \sqrt{3}}{2}}\right)}\right.
$$

$$
+\frac{1}{\sqrt{-x^{3}+1}\left(-\frac{3}{2}+\frac{\mathrm{I} \sqrt{3}}{2}+\sqrt{3}\right)}\left(4 \mathrm { I } \sqrt { \mathrm { I } (x + \frac { 1 } { 2 } - \frac { \mathrm { I } \sqrt { 3 } } { 2 }) \sqrt { 3 } } \sqrt { \frac { - 1 + x } { - \frac { 3 } { 2 } + \frac { \mathrm { I } \sqrt { 3 } } { 2 } } } \sqrt { - \mathrm { I } (x + \frac { 1 } { 2 } + \frac { \mathrm { I } \sqrt { 3 } } { 2 }) \sqrt { 3 } } \text { EllipticPi } \left(\frac{1}{3}(\sqrt{3}\right.\right.
$$

$$
\left.\left.\left.\sqrt{\mathrm{I}\left(x+\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right) \sqrt{3}}\right), \frac{\mathrm{I} \sqrt{3}}{-\frac{3}{2}+\frac{\mathrm{I} \sqrt{3}}{2}+\sqrt{3}}, \sqrt{\frac{\mathrm{I} \sqrt{3}}{-\frac{3}{2}+\frac{\mathrm{I} \sqrt{3}}{2}}}\right)\right)
$$

Problem 31: Result unnecessarily involves higher level functions and more than twice size of optimal antiderivative.

$$
\int \frac{1+x-\sqrt{3}}{(1+x+\sqrt{3}) \sqrt{x^{3}+1}} \mathrm{~d} x
$$

Optimal(type 3, 32 leaves, 2 steps):

$$
-\frac{2 \arctan \left(\frac{(1+x) \sqrt{3+2 \sqrt{3}}}{\sqrt{x^{3}+1}}\right)}{\sqrt{3+2 \sqrt{3}}}
$$

Result(type 4, 244 leaves):

$$
\left.\left.\frac{\left(-\frac{3}{2}+\frac{\mathrm{I} \sqrt{3}}{2}\right) \sqrt{3}}{3}, \sqrt{\frac{-\frac{3}{2}+\frac{\mathrm{I} \sqrt{3}}{2}}{-\frac{3}{2}-\frac{\mathrm{I} \sqrt{3}}{2}}}\right)\right)
$$

Problem 32: Unable to integrate problem.

$$
\int \frac{b^{1 / 3} x+a^{1 / 3}(1-\sqrt{3})}{\left(b^{1 / 3} x+a^{1 / 3}(1+\sqrt{3})\right) \sqrt{b x^{3}+a}} \mathrm{~d} x
$$

Optimal(type 3, 49 leaves, 2 steps):

$$
-\frac{2 \arctan \left(\frac{a^{1 / 6}\left(a^{1 / 3}+b^{1 / 3} x\right) \sqrt{3+2 \sqrt{3}}}{\sqrt{b x^{3}+a}}\right)}{a^{1 / 6} b^{1 / 3} \sqrt{3+2 \sqrt{3}}}
$$

Result(type 8, 46 leaves):

$$
\int \frac{b^{1 / 3} x+a^{1 / 3}(1-\sqrt{3})}{\left(b^{1 / 3} x+a^{1 / 3}(1+\sqrt{3})\right) \sqrt{b x^{3}+a}} \mathrm{~d} x
$$

Problem 33: Unable to integrate problem.

$$
\int \frac{-b^{1 / 3} x+a^{1 / 3}(1-\sqrt{3})}{\left(-b^{1 / 3} x+a^{1 / 3}(1+\sqrt{3})\right) \sqrt{-b x^{3}+a}} \mathrm{~d} x
$$

Optimal(type 3, 51 leaves, 2 steps):

$$
\frac{2 \arctan \left(\frac{a^{1 / 6}\left(a^{1 / 3}-b^{1 / 3} x\right) \sqrt{3+2 \sqrt{3}}}{\sqrt{-b x^{3}+a}}\right)}{a^{1 / 6} b^{1 / 3} \sqrt{3+2 \sqrt{3}}}
$$

Result(type 8, 49 leaves):

$$
\int \frac{-b^{1 / 3} x+a^{1 / 3}(1-\sqrt{3})}{\left(-b^{1 / 3} x+a^{1 / 3}(1+\sqrt{3})\right) \sqrt{-b x^{3}+a}} \mathrm{~d} x
$$

Problem 34: Unable to integrate problem.

$$
\int \frac{-b^{1 / 3} x+a^{1 / 3}(1-\sqrt{3})}{\left(-b^{1 / 3} x+a^{1 / 3}(1+\sqrt{3})\right) \sqrt{b x^{3}-a}} \mathrm{~d} x
$$

Optimal(type 3, 52 leaves, 2 steps):

$$
\frac{2 \operatorname{arctanh}\left(\frac{a^{1 / 6}\left(a^{1 / 3}-b^{1 / 3} x\right) \sqrt{3+2 \sqrt{3}}}{\sqrt{b x^{3}-a}}\right)}{a^{1 / 6} b^{1 / 3} \sqrt{3+2 \sqrt{3}}}
$$

Result(type 8, 50 leaves):

$$
\int \frac{-b^{1 / 3} x+a^{1 / 3}(1-\sqrt{3})}{\left(-b^{1 / 3} x+a^{1 / 3}(1+\sqrt{3})\right) \sqrt{b x^{3}-a}} \mathrm{~d} x
$$

Problem 35: Unable to integrate problem.

$$
\int \frac{b^{1 / 3} x+a^{1 / 3}(1-\sqrt{3})}{\left(b^{1 / 3} x+a^{1 / 3}(1+\sqrt{3})\right) \sqrt{-b x^{3}-a}} \mathrm{~d} x
$$

Optimal(type 3, 52 leaves, 2 steps):

$$
-\frac{2 \operatorname{arctanh}\left(\frac{a^{1 / 6}\left(a^{1 / 3}+b^{1 / 3} x\right) \sqrt{3+2 \sqrt{3}}}{\sqrt{-b x^{3}-a}}\right)}{a^{1 / 6} b^{1 / 3} \sqrt{3+2 \sqrt{3}}}
$$

Result(type 8, 49 leaves):

$$
\int \frac{b^{1 / 3} x+a^{1 / 3}(1-\sqrt{3})}{\left(b^{1 / 3} x+a^{1 / 3}(1+\sqrt{3})\right) \sqrt{-b x^{3}-a}} \mathrm{~d} x
$$

Problem 36: Unable to integrate problem.

$$
\int \frac{1-\left(\frac{b}{a}\right)^{1 / 3} x-\sqrt{3}}{\left(1-\left(\frac{b}{a}\right)^{1 / 3} x+\sqrt{3}\right) \sqrt{-b x^{3}+a}} \mathrm{~d} x
$$

Optimal(type 3, 57 leaves, 2 steps):

$$
\frac{2 \arctan \left(\frac{\left(1-\left(\frac{b}{a}\right)^{1 / 3} x\right) \sqrt{a} \sqrt{3+2 \sqrt{3}}}{\sqrt{-b x^{3}+a}}\right)}{\left(\frac{b}{a}\right)^{1 / 3} \sqrt{a} \sqrt{3+2 \sqrt{3}}}
$$

Result(type 8, 47 leaves):

$$
\int \frac{1-\left(\frac{b}{a}\right)^{1 / 3} x-\sqrt{3}}{\left(1-\left(\frac{b}{a}\right)^{1 / 3} x+\sqrt{3}\right) \sqrt{-b x^{3}+a}} \mathrm{~d} x
$$

Problem 37: Unable to integrate problem.

$$
\int \frac{1+\left(\frac{b}{a}\right)^{1 / 3} x-\sqrt{3}}{\left(1+\left(\frac{b}{a}\right)^{1 / 3} x+\sqrt{3}\right) \sqrt{-b x^{3}-a}} \mathrm{~d} x
$$

Optimal(type 3, 58 leaves, 2 steps):

$$
-\frac{2 \operatorname{arctanh}\left(\frac{\left(1+\left(\frac{b}{a}\right)^{1 / 3} x\right) \sqrt{a} \sqrt{3+2 \sqrt{3}}}{\sqrt{-b x^{3}-a}}\right)}{\left(\frac{b}{a}\right)^{1 / 3} \sqrt{a} \sqrt{3+2 \sqrt{3}}}
$$

Result(type 8, 47 leaves):

$$
\int \frac{1+\left(\frac{b}{a}\right)^{1 / 3} x-\sqrt{3}}{\left(1+\left(\frac{b}{a}\right)^{1 / 3} x+\sqrt{3}\right) \sqrt{-b x^{3}-a}} \mathrm{~d} x
$$

Problem 38: Result more than twice size of optimal antiderivative.

$$
\int \frac{1+x}{(1+x-\sqrt{3}) \sqrt{x^{3}+1}} d x
$$

Optimal(type 4, 119 leaves, 4 steps):

$$
\frac{(1+x) \text { EllipticF }\left(\frac{1+x-\sqrt{3}}{1+x+\sqrt{3}}, \mathrm{I} \sqrt{3}+2 \mathrm{I}\right)\left(\frac{\sqrt{6}}{2}+\frac{\sqrt{2}}{2}\right) \sqrt{\frac{x^{2}-x+1}{(1+x+\sqrt{3})^{2}}} 3^{3 / 4}}{3 \sqrt{x^{3}+1} \sqrt{\frac{1+x}{(1+x+\sqrt{3})^{2}}}-\frac{\operatorname{arctanh}\left(\frac{(1+x) \sqrt{-3+2 \sqrt{3}}}{\sqrt{x^{3}+1}}\right)}{\sqrt{-3+2 \sqrt{3}}}}
$$

Result(type 4, 244 leaves):

$$
\begin{aligned}
& -\frac{1}{\sqrt{x^{3}+1}}\left(2\left(\frac{3}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right) \sqrt{\frac{1+x}{\frac{3}{2}-\frac{\mathrm{I} \sqrt{3}}{2}}} \sqrt{\frac{x-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}}{-\frac{3}{2}-\frac{\mathrm{I} \sqrt{3}}{2}}} \sqrt{\frac{x-\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}}{-\frac{3}{2}+\frac{\mathrm{I} \sqrt{3}}{2}}} \text { EllipticPi } \sqrt{\frac{1+x}{\frac{3}{2}-\frac{\mathrm{I} \sqrt{3}}{2}}}\right. \\
& \left.-\frac{\left(-\frac{3}{2}+\frac{\mathrm{I} \sqrt{3}}{2}\right) \sqrt{3}}{3}, \sqrt{\frac{-\frac{3}{2}+\frac{\mathrm{I} \sqrt{3}}{2}}{-\frac{3}{2}-\frac{\mathrm{I} \sqrt{3}}{2}}}\right)
\end{aligned}
$$

Problem 39: Unable to integrate problem.

$$
\int \frac{f x+e}{\left(b^{1 / 3} x+a^{1 / 3}(1-\sqrt{3})\right) \sqrt{b x^{3}+a}} \mathrm{~d} x
$$

Optimal(type 4, 243 leaves, 4 steps):

$$
\begin{aligned}
& -\frac{\operatorname{arctanh}\left(\frac{a^{1 / 6}\left(a^{1 / 3}+b^{1 / 3} x\right) \sqrt{-3+2 \sqrt{3}}}{\sqrt{b x^{3}+a}}\right)\left(b^{1 / 3} e-a^{1 / 3} f(1-\sqrt{3})\right)}{b^{2 / 3} \sqrt{a} \sqrt{-9+6 \sqrt{3}}} \\
& -\frac{1}{3 a^{1 / 3} b^{2 / 3} \sqrt{b x^{3}+a} \sqrt{\frac{a^{1 / 3}\left(a^{1 / 3}+b^{1 / 3} x\right)}{\left(b^{1 / 3} x+a^{1 / 3}(1+\sqrt{3})\right)^{2}}}\left((a ^ { 1 / 3 } + b ^ { 1 / 3 } x) \operatorname { E l l i p t i c F } (\frac { b ^ { 1 / 3 } x + a ^ { 1 / 3 } (1 - \sqrt { 3 }) } { b ^ { 1 / 3 } x + a ^ { 1 / 3 } (1 + \sqrt { 3 }) } , \mathrm { I } \sqrt { 3 } + 2 \mathrm { I }) \left(b^{1 / 3} e\right.\right.} \\
& \left.\left.-a^{1 / 3} f(1+\sqrt{3})\right)\left(\frac{\sqrt{6}}{2}+\frac{\sqrt{2}}{2}\right) \sqrt{\frac{a^{2 / 3}-a^{1 / 3} b^{1 / 3} x+b^{2 / 3} x^{2}}{\left(b^{1 / 3} x+a^{1 / 3}(1+\sqrt{3})\right)^{2}}} 3^{1 / 4}\right)
\end{aligned}
$$

Result(type 8, 36 leaves):

$$
\int \frac{f x+e}{\left(b^{1 / 3} x+a^{1 / 3}(1-\sqrt{3})\right) \sqrt{b x^{3}+a}} \mathrm{~d} x
$$

Problem 40: Unable to integrate problem.

$$
\int \frac{f x+e}{\left(-b^{1 / 3} x+a^{1 / 3}(1-\sqrt{3})\right) \sqrt{b x^{3}-a}} \mathrm{~d} x
$$

Optimal(type 4, 255 leaves, 4 steps):
$\left.\frac{1}{3 a^{1 / 3} b^{2 / 3} \sqrt{b x^{3}-a} \sqrt{-\frac{a^{1 / 3}\left(a^{1 / 3}-b^{1 / 3} x\right)}{\left(-b^{1 / 3} x+a^{1 / 3}(1-\sqrt{3})\right)^{2}}}\left(\left(a^{1 / 3}-b^{1 / 3} x\right) \text { EllipticF }\left(\frac{-b^{1 / 3} x+a^{1 / 3}(1+\sqrt{3})}{-b^{1 / 3} x+a^{1 / 3}(1-\sqrt{3})}, 2 \mathrm{I}-\mathrm{I} \sqrt{3}\right)\left(b^{1 / 3} e+a^{1 / 3} f(1\right.\right.}\right)$
$+\sqrt{3})) \sqrt{\left.\frac{a^{2 / 3}+a^{1 / 3} b^{1 / 3} x+b^{2 / 3} x^{2}}{\left(-b^{1 / 3} x+a^{1 / 3}(1-\sqrt{3})\right)^{2}}\left(\frac{\sqrt{6}}{2}-\frac{\sqrt{2}}{2}\right) 3^{1 / 4}\right)+\frac{\arctan \left(\frac{a^{1 / 6}\left(a^{1 / 3}-b^{1 / 3} x\right) \sqrt{-3+2 \sqrt{3}}}{\sqrt{b x^{3}-a}}\right)\left(b^{1 / 3} e+a^{1 / 3} f(1-\sqrt{3})\right)}{b^{2 / 3} \sqrt{a} \sqrt{-9+6 \sqrt{3}}}}$.
Result(type 8, 39 leaves):

$$
\int \frac{f x+e}{\left(-b^{1 / 3} x+a^{1 / 3}(1-\sqrt{3})\right) \sqrt{b x^{3}-a}} \mathrm{~d} x
$$

Problem 41: Unable to integrate problem.

$$
\int \frac{x}{\left(-b^{1 / 3} x+a^{1 / 3}(1-\sqrt{3})\right) \sqrt{b x^{3}-a}} \mathrm{~d} x
$$

Optimal(type 4, 208 leaves, 4 steps):
$-\frac{\arctan \left(\frac{a^{1 / 6}\left(a^{1 / 3}-b^{1 / 3} x\right) \sqrt{-3+2 \sqrt{3}}}{\sqrt{b x^{3}-a}}\right) \sqrt{2} 3^{1 / 4}}{3 a^{1 / 6} b^{2 / 3}}$

$$
+\frac{\left(a^{1 / 3}-b^{1 / 3} x\right) \text { EllipticF }\left(\frac{-b^{1 / 3} x+a^{1 / 3}(1+\sqrt{3})}{-b^{1 / 3} x+a^{1 / 3}(1-\sqrt{3})}, 2 \mathrm{I}-\mathrm{I} \sqrt{3}\right) \sqrt{2} \sqrt{\frac{a^{2 / 3}+a^{1 / 3} b^{1 / 3} x+b^{2 / 3} x^{2}}{\left(-b^{1 / 3} x+a^{1 / 3}(1-\sqrt{3})\right)^{2}}} 3^{1 / 4}}{3 b^{2 / 3} \sqrt{b x^{3}-a} \sqrt{-\frac{a^{1 / 3}\left(a^{1 / 3}-b^{1 / 3} x\right)}{\left(-b^{1 / 3} x+a^{1 / 3}(1-\sqrt{3})\right)^{2}}}}
$$

Result(type 8, 35 leaves):

$$
\int \frac{x}{\left(-b^{1 / 3} x+a^{1 / 3}(1-\sqrt{3})\right) \sqrt{b x^{3}-a}} \mathrm{~d} x
$$

Problem 49: Unable to integrate problem.

$$
\int \frac{x^{3}(f x+e)^{n}}{b x^{3}+a} \mathrm{~d} x
$$

Optimal(type 5, 245 leaves, 7 steps):

$$
\begin{array}{r}
\frac{(f x+e)^{1+n}}{b f(1+n)}+\frac{a^{1 / 3}(f x+e)^{1+n} \text { hypergeom }\left([1,1+n],[n+2], \frac{b^{1 / 3}(f x+e)}{b^{1 / 3} e-a^{1 / 3} f}\right)}{3 b\left(b^{1 / 3} e-a^{1 / 3} f\right)(1+n)} \\
+\frac{a^{1 / 3}(f x+e)^{1+n} \operatorname{hypergeom}\left([1,1+n],[n+2], \frac{(-1)^{2 / 3} b^{1 / 3}(f x+e)}{(-1)^{2 / 3} b^{1 / 3} e-a^{1 / 3} f}\right)}{3 b\left((-1)^{2 / 3} b^{1 / 3} e-a^{1 / 3} f\right)(1+n)} \\
-\frac{a^{1 / 3}(f x+e)^{1+n} \operatorname{hypergeom}\left([1,1+n],[n+2], \frac{(-1)^{1 / 3} b^{1 / 3}(f x+e)}{(-1)^{1 / 3} b^{1 / 3} e+a^{1 / 3} f}\right)}{3 b\left((-1)^{1 / 3} b^{1 / 3} e+a^{1 / 3} f\right)(1+n)}
\end{array}
$$

Result(type 8, 22 leaves):

$$
\int \frac{x^{3}(f x+e)^{n}}{b x^{3}+a} \mathrm{~d} x
$$

Problem 50: Unable to integrate problem.

$$
\int \frac{x(f x+e)^{n}}{b x^{3}+a} \mathrm{~d} x
$$

Optimal(type 5, 230 leaves, 5 steps):

$$
\begin{gathered}
\frac{(f x+e)^{1+n} \text { hypergeom }\left([1,1+n],[n+2], \frac{b^{1 / 3}(f x+e)}{b^{1 / 3} e-a^{1 / 3} f}\right)}{3 a^{1 / 3} b^{1 / 3}\left(b^{1 / 3} e-a^{1 / 3} f\right)(1+n)}-\frac{(-1)^{1 / 3}(f x+e)^{1+n} \text { hypergeom }\left([1,1+n],[n+2], \frac{(-1)^{2 / 3} b^{1 / 3}(f x+e)}{(-1)^{2 / 3} b^{1 / 3} e-a^{1 / 3} f}\right)}{3 a^{1 / 3} b^{1 / 3}\left((-1)^{2 / 3} b^{1 / 3} e-a^{1 / 3} f\right)(1+n)} \\
-\frac{(-1)^{2 / 3}(f x+e)^{1+n} \text { hypergeom }\left([1,1+n],[n+2], \frac{(-1)^{1 / 3} b^{1 / 3}(f x+e)}{(-1)^{1 / 3} b^{1 / 3} e+a^{1 / 3} f}\right)}{3 a^{1 / 3} b^{1 / 3}\left((-1)^{1 / 3} b^{1 / 3} e+a^{1 / 3} f\right)(1+n)}
\end{gathered}
$$

Result(type 8, 20 leaves):

$$
\int \frac{x(f x+e)^{n}}{b x^{3}+a} \mathrm{~d} x
$$

Problem 51: Unable to integrate problem.

$$
\int \frac{\left(e^{3} x^{3}+d^{3}\right)^{p}}{e x+d} \mathrm{~d} x
$$

Optimal(type 6, 123 leaves, ? steps):

$$
\frac{\left(e^{3} x^{3}+d^{3}\right)^{p} \text { AppellFI }\left(p,-p,-p, 1+p,-\frac{2(e x+d)}{d(-3+\mathrm{I} \sqrt{3})}, \frac{2(e x+d)}{d(3+\mathrm{I} \sqrt{3})}\right)}{e p\left(1+\frac{2(e x+d)}{d(-3+\mathrm{I} \sqrt{3})}\right)^{p}\left(1-\frac{2(e x+d)}{d(3+\mathrm{I} \sqrt{3})}\right)^{p}}
$$

Result(type 8, 23 leaves):

$$
\int \frac{\left(e^{3} x^{3}+d^{3}\right)^{p}}{e x+d} \mathrm{~d} x
$$

Problem 52: Result unnecessarily involves higher level functions and more than twice size of optimal antiderivative.

$$
\int \frac{-x^{2}+2 x+2}{\left(x^{2}+2\right) \sqrt{x^{3}-1}} d x
$$

Optimal(type 3, 16 leaves, 2 steps):

$$
-2 \operatorname{arctanh}\left(\frac{1-x}{\sqrt{x^{3}-1}}\right)
$$

Result(type 4, 1655 leaves):

$$
\begin{aligned}
& -\frac{1}{\sqrt{x^{3}-1}(1-\mathrm{I} \sqrt{2})}\left(3 \sqrt{\frac{x}{-\frac{3}{2}-\frac{\mathrm{I} \sqrt{3}}{2}}-\frac{1}{-\frac{3}{2}-\frac{\mathrm{I} \sqrt{3}}{2}}} \sqrt{\frac{x}{\frac{3}{2}-\frac{\mathrm{I} \sqrt{3}}{2}}+\frac{1}{2\left(\frac{3}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right)}-\frac{\mathrm{I} \sqrt{3}}{2\left(\frac{3}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right)}}\right. \\
& \sqrt{\frac{x}{\frac{3}{2}+\frac{I \sqrt{3}}{2}}+\frac{1}{2\left(\frac{3}{2}+\frac{\mathrm{I} \sqrt{3}}{2}\right)}+\frac{\mathrm{I} \sqrt{3}}{2\left(\frac{3}{2}+\frac{\mathrm{I} \sqrt{3}}{2}\right)}} \operatorname{EllipticPi}\left(\sqrt{\left.\frac{-1+x}{-\frac{3}{2}-\frac{\mathrm{I} \sqrt{3}}{2}}, \frac{\frac{3}{2}+\frac{\mathrm{I} \sqrt{3}}{2}}{1-\mathrm{I} \sqrt{2}}, \int \frac{\frac{3}{2}+\frac{\mathrm{I} \sqrt{3}}{2}}{\frac{3}{2}-\frac{\mathrm{I} \sqrt{3}}{2}}\right)}\right) \\
& -\frac{1}{\sqrt{x^{3}-1}(1-\mathrm{I} \sqrt{2})}\left(\mathrm{I} \sqrt{\frac{x}{-\frac{3}{2}-\frac{\mathrm{I} \sqrt{3}}{2}}-\frac{1}{-\frac{3}{2}-\frac{\mathrm{I} \sqrt{3}}{2}}} \sqrt{\frac{x}{\frac{3}{2}-\frac{\mathrm{I} \sqrt{3}}{2}}+\frac{1}{2\left(\frac{3}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right)}-\frac{\mathrm{I} \sqrt{3}}{2\left(\frac{3}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right)}}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \sqrt{\frac{x}{\frac{3}{2}+\frac{\mathrm{I} \sqrt{3}}{2}}+\frac{1}{2\left(\frac{3}{2}+\frac{\mathrm{I} \sqrt{3}}{2}\right)}+\frac{\mathrm{I} \sqrt{3}}{2\left(\frac{3}{2}+\frac{\mathrm{I} \sqrt{3}}{2}\right)}} \operatorname{EllipticPi}\left(\sqrt{\left.\left.\frac{-1+x}{-\frac{3}{2}-\frac{\mathrm{I} \sqrt{3}}{2}}, \frac{\frac{3}{2}+\frac{\mathrm{I} \sqrt{3}}{2}}{1-\mathrm{I} \sqrt{2}}, \int \frac{\frac{3}{2}+\frac{\mathrm{I} \sqrt{3}}{2}}{\frac{3}{2}-\frac{\mathrm{I} \sqrt{3}}{2}}\right) \sqrt{\sqrt{3}}\right)}\right) \\
& +\frac{1}{\sqrt{x^{3}-1}(1-\mathrm{I} \sqrt{2})}\left(3 \mathrm{I} \sqrt{2} \sqrt{\frac{x}{-\frac{3}{2}-\frac{\mathrm{I} \sqrt{3}}{2}}-\frac{1}{-\frac{3}{2}-\frac{\mathrm{I} \sqrt{3}}{2}}} \sqrt{\frac{x}{\frac{3}{2}-\frac{\mathrm{I} \sqrt{3}}{2}}+\frac{1}{2\left(\frac{3}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right)}-\frac{\mathrm{I} \sqrt{3}}{2\left(\frac{3}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right)}}\right. \\
& \sqrt{\frac{x}{\frac{3}{2}+\frac{I \sqrt{3}}{2}}+\frac{1}{2\left(\frac{3}{2}+\frac{\mathrm{I} \sqrt{3}}{2}\right)}+\frac{\mathrm{I} \sqrt{3}}{2\left(\frac{3}{2}+\frac{\mathrm{I} \sqrt{3}}{2}\right)}} \operatorname{EllipticPi}\left(\sqrt{\frac{-1+x}{-\frac{3}{2}-\frac{\mathrm{I} \sqrt{3}}{2}}, \frac{\frac{3}{2}+\frac{\mathrm{I} \sqrt{3}}{2}}{1-\mathrm{I} \sqrt{2}}, \quad\left(\frac{\frac{3}{2}+\frac{\mathrm{I} \sqrt{3}}{2}}{\frac{3}{2}-\frac{\mathrm{I} \sqrt{3}}{2}}\right)}\right) \\
& -\frac{1}{\sqrt{x^{3}-1}(1-\mathrm{I} \sqrt{2})}\left(\sqrt{2} \sqrt{\frac{x}{-\frac{3}{2}-\frac{\mathrm{I} \sqrt{3}}{2}}-\frac{1}{-\frac{3}{2}-\frac{\mathrm{I} \sqrt{3}}{2}}} \sqrt{\frac{x}{\frac{3}{2}-\frac{\mathrm{I} \sqrt{3}}{2}}+\frac{1}{2\left(\frac{3}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right)}-\frac{\mathrm{I} \sqrt{3}}{2\left(\frac{3}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right)}}\right. \\
& \left.\sqrt{\frac{x}{\frac{3}{2}+\frac{\mathrm{I} \sqrt{3}}{2}}+\frac{1}{2\left(\frac{3}{2}+\frac{\mathrm{I} \sqrt{3}}{2}\right)}+\frac{\mathrm{I} \sqrt{3}}{2\left(\frac{3}{2}+\frac{\mathrm{I} \sqrt{3}}{2}\right)}} \operatorname{EllipticPi}\left(\sqrt{\frac{-1+x}{-\frac{3}{2}-\frac{\mathrm{I} \sqrt{3}}{2}}}, \frac{\frac{3}{2}+\frac{\mathrm{I} \sqrt{3}}{2}}{1-\mathrm{I} \sqrt{2}}, \int \frac{\frac{3}{2}+\frac{\mathrm{I} \sqrt{3}}{2}}{\frac{3}{2}-\frac{\mathrm{I} \sqrt{3}}{2}}\right) \sqrt{\sqrt{3}}\right) \\
& -\frac{1}{\sqrt{x^{3}-1}(\mathrm{I} \sqrt{2}+1)}\left(3 \sqrt{\frac{x}{-\frac{3}{2}-\frac{\mathrm{I} \sqrt{3}}{2}}-\frac{1}{-\frac{3}{2}-\frac{\mathrm{I} \sqrt{3}}{2}} \sqrt{\frac{x}{\frac{3}{2}-\frac{\mathrm{I} \sqrt{3}}{2}}+\frac{1}{2\left(\frac{3}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right)}-\frac{\mathrm{I} \sqrt{3}}{2\left(\frac{3}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right)}} \text { (} \sqrt{\frac{x}{2}}}\right. \\
& \left.\sqrt{\frac{x}{\frac{3}{2}+\frac{\mathrm{I} \sqrt{3}}{2}}+\frac{1}{2\left(\frac{3}{2}+\frac{\mathrm{I} \sqrt{3}}{2}\right)}+\frac{\mathrm{I} \sqrt{3}}{2\left(\frac{3}{2}+\frac{\mathrm{I} \sqrt{3}}{2}\right)}} \operatorname{EllipticPi}\left(\sqrt{\frac{-1+x}{-\frac{3}{2}-\frac{\mathrm{I} \sqrt{3}}{2}}}, \frac{\frac{3}{2}+\frac{\mathrm{I} \sqrt{3}}{2}}{\mathrm{I} \sqrt{2}+1}, \int \frac{\frac{3}{2}+\frac{\mathrm{I} \sqrt{3}}{2}}{\frac{3}{2}-\frac{\mathrm{I} \sqrt{3}}{2}}\right)\right) \\
& -\frac{1}{\sqrt{x^{3}-1}(\mathrm{I} \sqrt{2}+1)}\left(\mathrm{I} \sqrt{\frac{x}{-\frac{3}{2}-\frac{\mathrm{I} \sqrt{3}}{2}}-\frac{1}{-\frac{3}{2}-\frac{\mathrm{I} \sqrt{3}}{2}}} \sqrt{\frac{x}{\frac{3}{2}-\frac{\mathrm{I} \sqrt{3}}{2}}+\frac{1}{2\left(\frac{3}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right)}-\frac{\mathrm{I} \sqrt{3}}{2\left(\frac{3}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right)}}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.\sqrt{\frac{x}{\frac{3}{2}+\frac{\mathrm{I} \sqrt{3}}{2}}+\frac{1}{2\left(\frac{3}{2}+\frac{\mathrm{I} \sqrt{3}}{2}\right)}+\frac{\mathrm{I} \sqrt{3}}{2\left(\frac{3}{2}+\frac{\mathrm{I} \sqrt{3}}{2}\right)}} \operatorname{EllipticPi}\left(\sqrt{\frac{-1+x}{-\frac{3}{2}-\frac{\mathrm{I} \sqrt{3}}{2}}}, \frac{\frac{3}{2}+\frac{\mathrm{I} \sqrt{3}}{2}}{\mathrm{I} \sqrt{2}+1}, \int \frac{\frac{3}{2}+\frac{\mathrm{I} \sqrt{3}}{2}}{\frac{3}{2}-\frac{\mathrm{I} \sqrt{3}}{2}}\right) \sqrt{\sqrt{3}}\right) \\
& -\frac{1}{\sqrt{x^{3}-1}(\mathrm{I} \sqrt{2}+1)}\left(3 \mathrm{I} \sqrt{2} \sqrt{\frac{x}{-\frac{3}{2}-\frac{\mathrm{I} \sqrt{3}}{2}}-\frac{1}{-\frac{3}{2}-\frac{\mathrm{I} \sqrt{3}}{2}}} \sqrt{\frac{x}{\frac{3}{2}-\frac{\mathrm{I} \sqrt{3}}{2}}+\frac{1}{2\left(\frac{3}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right)}-\frac{\mathrm{I} \sqrt{3}}{2\left(\frac{3}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right)}}\right. \\
& \left.\sqrt{\frac{x}{\frac{3}{2}+\frac{\mathrm{I} \sqrt{3}}{2}}+\frac{1}{2\left(\frac{3}{2}+\frac{\mathrm{I} \sqrt{3}}{2}\right)}+\frac{\mathrm{I} \sqrt{3}}{2\left(\frac{3}{2}+\frac{\mathrm{I} \sqrt{3}}{2}\right)}} \operatorname{EllipticPi}\left(\sqrt{\frac{-1+x}{-\frac{3}{2}-\frac{\mathrm{I} \sqrt{3}}{2}}}, \frac{\frac{3}{2}+\frac{\mathrm{I} \sqrt{3}}{2}}{\mathrm{I} \sqrt{2}+1}, \int \frac{\frac{3}{2}+\frac{\mathrm{I} \sqrt{3}}{2}}{\frac{3}{2}-\frac{\mathrm{I} \sqrt{3}}{2}}\right)\right) \\
& +\frac{1}{\sqrt{x^{3}-1}(\mathrm{I} \sqrt{2}+1)}\left(\sqrt{2} \sqrt{\frac{x}{-\frac{3}{2}-\frac{\mathrm{I} \sqrt{3}}{2}}-\frac{1}{-\frac{3}{2}-\frac{\mathrm{I} \sqrt{3}}{2}}} \sqrt{\frac{x}{\frac{3}{2}-\frac{\mathrm{I} \sqrt{3}}{2}}+\frac{1}{2\left(\frac{3}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right)}-\frac{\mathrm{I} \sqrt{3}}{2\left(\frac{3}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right)}}\right. \\
& \left.\sqrt{\frac{x}{\frac{3}{2}+\frac{\mathrm{I} \sqrt{3}}{2}}+\frac{1}{2\left(\frac{3}{2}+\frac{\mathrm{I} \sqrt{3}}{2}\right)}+\frac{\mathrm{I} \sqrt{3}}{2\left(\frac{3}{2}+\frac{\mathrm{I} \sqrt{3}}{2}\right)}} \operatorname{EllipticPi}\left(\sqrt{\frac{-1+x}{-\frac{3}{2}-\frac{\mathrm{I} \sqrt{3}}{2}}}, \frac{\frac{3}{2}+\frac{\mathrm{I} \sqrt{3}}{2}}{\mathrm{I} \sqrt{2}+1}, \int \frac{\left(\frac{3}{2}+\frac{\mathrm{I} \sqrt{3}}{2}\right.}{\frac{3}{2}-\frac{\mathrm{I} \sqrt{3}}{2}}\right) \sqrt{\sqrt{3}}\right)
\end{aligned}
$$

Problem 53: Result unnecessarily involves higher level functions and more than twice size of optimal antiderivative.

$$
\int \frac{-x^{2}-2 x+2}{\left(d x+x^{2}+d+2\right) \sqrt{-x^{3}-1}} \mathrm{~d} x
$$

Optimal(type 3, 26 leaves, 2 steps):

$$
\frac{2 \operatorname{arctanh}\left(\frac{(1+x) \sqrt{1+d}}{\sqrt{-x^{3}-1}}\right)}{\sqrt{1+d}}
$$

Result(type 4, 1887 leaves):

$$
\begin{aligned}
& \left.2 \mathrm{I} \sqrt{3} \sqrt{\mathrm{I}\left(x-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right) \sqrt{3}} \sqrt{\frac{1+x}{\frac{3}{2}+\frac{\mathrm{I} \sqrt{3}}{2}}} \sqrt{-\mathrm{I}\left(x-\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}\right) \sqrt{3}} \text { EllipticF } \frac{\sqrt{3} \sqrt{\mathrm{I}\left(x-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right) \sqrt{3}}}{3}, \sqrt{\frac{\mathrm{I} \sqrt{3}}{\frac{3}{2}}+\frac{\mathrm{I} \sqrt{3}}{2}}\right) \\
& 3 \sqrt{-x^{3}-1} \\
& +\frac{1}{3 \sqrt{d^{2}-4 d-8} \sqrt{-x^{3}-1}\left(\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}+\frac{d}{2}-\frac{\sqrt{d^{2}-4 d-8}}{2}\right)}\left(\mathrm{I} \sqrt{3} \sqrt{\mathrm{I} \sqrt{3} x-\frac{\mathrm{I} \sqrt{3}}{2}+\frac{3}{2}} \sqrt{\frac{x}{\frac{3}{2}+\frac{\mathrm{I} \sqrt{3}}{2}}+\frac{1}{\frac{3}{2}}+\frac{\mathrm{I} \sqrt{3}}{2}}\right. \\
& \left.\sqrt{-\mathrm{I} \sqrt{3} x+\frac{\mathrm{I} \sqrt{3}}{2}+\frac{3}{2}} \text { EllipticPi }\left(\frac{\sqrt{3} \sqrt{\mathrm{I}\left(x-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right) \sqrt{3}}}{3}, \frac{\mathrm{I} \sqrt{3}}{\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}+\frac{d}{2}-\frac{\sqrt{d^{2}-4 d-8}}{2}}, \sqrt{\left.\frac{\mathrm{I} \sqrt{3}}{\frac{3}{2}+\frac{\mathrm{I} \sqrt{3}}{2}}\right)}\right) d^{2}\right) \\
& -\frac{1}{3 \sqrt{-x^{3}-1}\left(\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}+\frac{d}{2}-\frac{\sqrt{d^{2}-4 d-8}}{2}\right)}\left(\mathrm{I} \sqrt{3} \sqrt{\mathrm{I} \sqrt{3} x-\frac{\mathrm{I} \sqrt{3}}{2}+\frac{3}{2}} \sqrt{\frac{x}{\frac{3}{2}+\frac{\mathrm{I} \sqrt{3}}{2}}+\frac{1}{\frac{3}{2}+\frac{\mathrm{I} \sqrt{3}}{2}} \sqrt{-\mathrm{I} \sqrt{3} x+\frac{\mathrm{I} \sqrt{3}}{2}}+\frac{3}{2}}\right. \\
& \operatorname{EllipticPi}\left(\frac{\sqrt{3} \sqrt{\mathrm{I}\left(x-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right) \sqrt{3}}}{3}, \frac{\mathrm{I} \sqrt{3}}{\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}+\frac{d}{2}-\frac{\sqrt{d^{2}-4 d-8}}{2}}, \sqrt{\frac{\mathrm{I} \sqrt{3}}{\frac{3}{2}+\frac{\mathrm{I} \sqrt{3}}{2}}}\right) d \\
& -\frac{1}{3 \sqrt{d^{2}-4 d-8} \sqrt{-x^{3}-1}\left(\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}+\frac{d}{2}-\frac{\sqrt{d^{2}-4 d-8}}{2}\right)}\left(4 \mathrm{I} \sqrt{3} \sqrt{\mathrm{I} \sqrt{3} x-\frac{\mathrm{I} \sqrt{3}}{2}+\frac{3}{2}} \sqrt{\frac{x}{\frac{3}{2}+\frac{\mathrm{I} \sqrt{3}}{2}}+\frac{1}{\frac{3}{2}}+\frac{\mathrm{I} \sqrt{3}}{2}}\right. \\
& \sqrt{-\mathrm{I} \sqrt{3} x+\frac{\mathrm{I} \sqrt{3}}{2}+\frac{3}{2}} \operatorname{EllipticPi}\left(\frac{\sqrt{3} \sqrt{\mathrm{I}\left(x-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right) \sqrt{3}}}{3}, \frac{\mathrm{I} \sqrt{3}}{\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}+\frac{d}{2}-\frac{\sqrt{d^{2}-4 d-8}}{2}}, \sqrt{\left.\frac{\mathrm{I} \sqrt{3}}{\frac{3}{2}+\frac{\mathrm{I} \sqrt{3}}{2}}\right) d d}\right) \\
& +\frac{1}{3 \sqrt{-x^{3}-1}\left(\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}+\frac{d}{2}-\frac{\sqrt{d^{2}-4 d-8}}{2}\right)}\left(2 \mathrm{I} \sqrt{3} \sqrt{\mathrm{I} \sqrt{3} x-\frac{\mathrm{I} \sqrt{3}}{2}+\frac{3}{2}} \sqrt{\frac{x}{\frac{3}{2}+\frac{\mathrm{I} \sqrt{3}}{2}}+\frac{3}{\frac{3}{2}+\frac{\mathrm{I} \sqrt{3}}{2}} \sqrt{-\mathrm{I} \sqrt{3} x+\frac{\mathrm{I} \sqrt{3}}{2}}+\frac{3}{2}}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { EllipticPi } \left.\left(\frac{\sqrt{3} \sqrt{\mathrm{I}\left(x-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right) \sqrt{3}}}{3}, \frac{\mathrm{I} \sqrt{3}}{\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}+\frac{d}{2}-\frac{\sqrt{d^{2}-4 d-8}}{2}}, \sqrt{\frac{\mathrm{I} \sqrt{3}}{\frac{3}{2}+\frac{\mathrm{I} \sqrt{3}}{2}}}\right)\right) \\
& -\frac{1}{3 \sqrt{d^{2}-4 d-8} \sqrt{-x^{3}-1}\left(\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}+\frac{d}{2}-\frac{\sqrt{d^{2}-4 d-8}}{2}\right)}\left(8 \mathrm{I} \sqrt{3} \sqrt{\mathrm{I} \sqrt{3} x-\frac{\mathrm{I} \sqrt{3}}{2}+\frac{3}{2}} \sqrt{\frac{x}{\frac{3}{2}+\frac{\mathrm{I} \sqrt{3}}{2}}+\frac{1}{\frac{3}{2}}+\frac{\mathrm{I} \sqrt{3}}{2}}\right. \\
& \sqrt{-\mathrm{I} \sqrt{3} x+\frac{\mathrm{I} \sqrt{3}}{2}+\frac{3}{2}} \operatorname{EllipticPi}\left(\frac{\sqrt{3} \sqrt{\mathrm{I}\left(x-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right) \sqrt{3}}}{3}, \frac{\mathrm{I} \sqrt{3}}{\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}+\frac{d}{2}-\frac{\sqrt{d^{2}-4 d-8}}{2}}, \sqrt{\left.\frac{\mathrm{I} \sqrt{3}}{\frac{3}{2}+\frac{\mathrm{I} \sqrt{3}}{2}}\right)}\right) \\
& -\frac{1}{3 \sqrt{d^{2}-4 d-8} \sqrt{-x^{3}-1}\left(\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}+\frac{d}{2}+\frac{\sqrt{d^{2}-4 d-8}}{2}\right)}\left(\mathrm{I} \sqrt{3} \sqrt{\mathrm{I} \sqrt{3} x-\frac{\mathrm{I} \sqrt{3}}{2}+\frac{3}{2}} \sqrt{\frac{x}{\frac{3}{2}+\frac{\mathrm{I} \sqrt{3}}{2}}+\frac{1}{\frac{3}{2}}+\frac{\mathrm{I} \sqrt{3}}{2}}\right. \\
& \left.\sqrt{-\mathrm{I} \sqrt{3} x+\frac{\mathrm{I} \sqrt{3}}{2}+\frac{3}{2}} \operatorname{EllipticPi}\left(\frac{\sqrt{3} \sqrt{\mathrm{I}\left(x-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right) \sqrt{3}}}{3}, \frac{\mathrm{I} \sqrt{3}}{\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}+\frac{d}{2}+\frac{\sqrt{d^{2}-4 d-8}}{2}}, \sqrt{\left.\frac{\mathrm{I} \sqrt{3}}{\frac{3}{2}+\frac{\mathrm{I} \sqrt{3}}{2}}\right)}\right) d^{2}\right) \\
& -\frac{1}{3 \sqrt{-x^{3}-1}\left(\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}+\frac{d}{2}+\frac{\sqrt{d^{2}-4 d-8}}{2}\right)}\left(\mathrm{I} \sqrt{3} \sqrt{\mathrm{I} \sqrt{3} x-\frac{\mathrm{I} \sqrt{3}}{2}+\frac{3}{2}} \sqrt{\frac{x}{\frac{3}{2}+\frac{\mathrm{I} \sqrt{3}}{2}}+\frac{1}{\frac{3}{2}+\frac{\mathrm{I} \sqrt{3}}{2}} \sqrt{-\mathrm{I} \sqrt{3} x+\frac{\mathrm{I} \sqrt{3}}{2}}+\frac{3}{2}}\right. \\
& \text { EllipticPi } \left.\left(\frac{\sqrt{3} \sqrt{\mathrm{I}\left(x-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right) \sqrt{3}}}{3}, \frac{\mathrm{I} \sqrt{3}}{\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}+\frac{d}{2}+\frac{\sqrt{d^{2}-4 d-8}}{2}}, \sqrt{\frac{\mathrm{I} \sqrt{3}}{\frac{3}{2}+\frac{\mathrm{I} \sqrt{3}}{2}}}\right) d\right) \\
& +\frac{1}{3 \sqrt{d^{2}-4 d-8} \sqrt{-x^{3}-1}\left(\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}+\frac{d}{2}+\frac{\sqrt{d^{2}-4 d-8}}{2}\right)}\left(4 \mathrm{I} \sqrt{3} \sqrt{\mathrm{I} \sqrt{3} x-\frac{\mathrm{I} \sqrt{3}}{2}+\frac{3}{2}} \sqrt{\frac{x}{\frac{3}{2}+\frac{\mathrm{I} \sqrt{3}}{2}}+\frac{1}{\frac{3}{2}}+\frac{\mathrm{I} \sqrt{3}}{2}}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.\sqrt{-\mathrm{I} \sqrt{3} x+\frac{\mathrm{I} \sqrt{3}}{2}+\frac{3}{2}} \operatorname{EllipticPi}\left(\frac{\sqrt{3} \sqrt{\mathrm{I}\left(x-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right) \sqrt{3}}}{3}, \frac{\mathrm{I} \sqrt{3}}{\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}+\frac{d}{2}+\frac{\sqrt{d^{2}-4 d-8}}{2}}, \sqrt{\frac{\mathrm{I} \sqrt{3}}{\frac{3}{2}+\frac{\mathrm{I} \sqrt{3}}{2}}}\right) d\right) \\
& +\frac{1}{3 \sqrt{-x^{3}-1}\left(\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}+\frac{d}{2}+\frac{\sqrt{d^{2}-4 d-8}}{2}\right)}\left(2 \mathrm{I} \sqrt{3} \sqrt{\mathrm{I} \sqrt{3} x-\frac{\mathrm{I} \sqrt{3}}{2}+\frac{3}{2}} \sqrt{\frac{x}{\frac{3}{2}+\frac{\mathrm{I} \sqrt{3}}{2}}+\frac{3}{\frac{3}{2}+\frac{\mathrm{I} \sqrt{3}}{2}} \sqrt{-\mathrm{I} \sqrt{3}} x+\frac{\mathrm{I} \sqrt{3}}{2}+\frac{3}{2}}\right. \\
& \text { EllipticPi } \left.\left(\frac{\sqrt{3} \sqrt{\mathrm{I}\left(x-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right) \sqrt{3}}}{3}, \frac{\mathrm{I} \sqrt{3}}{\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}+\frac{d}{2}+\frac{\sqrt{d^{2}-4 d-8}}{2}}, \sqrt{\frac{\mathrm{I} \sqrt{3}}{\frac{3}{2}+\frac{\mathrm{I} \sqrt{3}}{2}}}\right)\right) \\
& +\frac{1}{3 \sqrt{d^{2}-4 d-8} \sqrt{-x^{3}-1}\left(\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}+\frac{d}{2}+\frac{\sqrt{d^{2}-4 d-8}}{2}\right)}\left(8 \mathrm{I} \sqrt{3} \sqrt{\mathrm{I} \sqrt{3} x-\frac{\mathrm{I} \sqrt{3}}{2}+\frac{3}{2}} \sqrt{\frac{x}{\frac{3}{2}+\frac{\mathrm{I} \sqrt{3}}{2}}+\frac{3}{\frac{3}{2}}+\frac{\mathrm{I} \sqrt{3}}{2}}\right. \\
& \sqrt{-\mathrm{I} \sqrt{3} x+\frac{\mathrm{I} \sqrt{3}}{2}+\frac{3}{2}} \operatorname{EllipticPi}\left(\frac{\sqrt{3} \sqrt{\mathrm{I}\left(x-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right) \sqrt{3}}}{3}, \frac{\mathrm{I} \sqrt{3}}{\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}+\frac{d}{2}+\frac{\sqrt{d^{2}-4 d-8}}{2}}, \sqrt{\left.\frac{\mathrm{I} \sqrt{3}}{\frac{3}{2}+\frac{\mathrm{I} \sqrt{3}}{2}}\right)}\right)
\end{aligned}
$$

Problem 59: Unable to integrate problem.

$$
\int \frac{x^{3}(d x+c)^{1+n}}{b x^{4}+a} \mathrm{~d} x
$$

Optimal(type 5, 293 leaves, 10 steps):

$$
\begin{array}{r}
-\frac{(d x+c)^{n+2} \text { hypergeom }\left([1, n+2],[3+n], \frac{b^{1 / 4}(d x+c)}{b^{1 / 4} c-(-a)^{1 / 4} d}\right)}{4 b^{3 / 4}\left(b^{1 / 4} c-(-a)^{1 / 4} d\right)(n+2)}-\frac{(d x+c)^{n+2} \text { hypergeom }\left([1, n+2],[3+n], \frac{b^{1 / 4}(d x+c)}{b^{1 / 4} c+(-a)^{1 / 4} d}\right)}{4 b^{3 / 4}\left(b^{1 / 4} c+(-a)^{1 / 4} d\right)(n+2)} \\
-\frac{(d x+c)^{n+2} \operatorname{hypergeom}\left([1, n+2],[3+n], \frac{b^{1 / 4}(d x+c)}{b^{1 / 4} c-d \sqrt{-\sqrt{-a}}}\right)}{4 b^{3 / 4}(n+2)\left(b^{1 / 4} c-d \sqrt{-\sqrt{-a}}\right)}-\frac{(d x+c)^{n+2} \operatorname{hypergeom}\left([1, n+2],[3+n], \frac{b^{1 / 4}(d x+c)}{1 / 4} c+d \sqrt{-\sqrt{-a}}\right)}{4 b^{3 / 4}(n+2)\left(b^{1 / 4} c+d \sqrt{-\sqrt{-a}}\right)}
\end{array}
$$

Result(type 8, 24 leaves):

$$
\int \frac{x^{3}(d x+c)^{1+n}}{b x^{4}+a} \mathrm{~d} x
$$

Problem 70: Unable to integrate problem.

$$
\int \frac{\left(c \sqrt{b x^{2}+a}\right)^{3 / 2}}{x^{4}} \mathrm{~d} x
$$

Optimal(type 4, 151 leaves, 5 steps):

$$
-\frac{\left(c \sqrt{b x^{2}+a}\right)^{3 / 2}}{3 x^{3}}-\frac{b\left(c \sqrt{b x^{2}+a}\right)^{3 / 2}}{2 a x}+\frac{b^{2} x\left(c \sqrt{b x^{2}+a}\right)^{3 / 2}}{2 a\left(b x^{2}+a\right)}
$$

$$
-\frac{b^{3 / 2} \sqrt{\cos \left(\frac{\arctan \left(\frac{x \sqrt{b}}{\sqrt{a}}\right)}{2}\right)^{2}} \text { EllipticE }\left(\sin \left(\frac{\arctan \left(\frac{x \sqrt{b}}{\sqrt{a}}\right)}{2}\right), \sqrt{2}\right)\left(c \sqrt{b x^{2}+a}\right)^{3 / 2}}{2}
$$

$$
2 \cos \left(\frac{\arctan \left(\frac{x \sqrt{b}}{\sqrt{a}}\right)}{2}\right) a^{3 / 2}\left(1+\frac{b x^{2}}{a}\right)^{3 / 4}
$$

Result(type 8, 19 leaves):

$$
\int \frac{\left(c \sqrt{b x^{2}+a}\right)^{3 / 2}}{x^{4}} \mathrm{~d} x
$$

Problem 72: Result more than twice size of optimal antiderivative.

$$
\int x^{3} \sqrt{\frac{e\left(b x^{2}+a\right)}{d x^{2}+c}} d x
$$

Optimal(type 3, 137 leaves, 5 steps):

$$
\frac{(-a d+b c)(a d+3 b c) \operatorname{arctanh}\left(\frac{\sqrt{d} \sqrt{\frac{e\left(b x^{2}+a\right)}{d x^{2}+c}}}{\sqrt{b} \sqrt{e}}\right) \sqrt{e}}{8 b^{3 / 2} d^{5} / 2}-\frac{(-a d+5 b c)\left(d x^{2}+c\right) \sqrt{\frac{e\left(b x^{2}+a\right)}{d x^{2}+c}}}{8 b d^{2}}+\frac{\left(d x^{2}+c\right)^{2} \sqrt{\frac{e\left(b x^{2}+a\right)}{d x^{2}+c}}}{4 d^{2}}
$$

Result(type 3, 340 leaves):
$-\frac{1}{16 \sqrt{\left(d x^{2}+c\right)\left(b x^{2}+a\right)} d^{2} b \sqrt{b d}}\left(\sqrt{\frac{e\left(b x^{2}+a\right)}{d x^{2}+c}}\left(d x^{2}+c\right)\left(-4 \sqrt{b d x^{4}+a d x^{2}+b c x^{2}+a c} x^{2} d b \sqrt{b d}\right.\right.$

$$
\begin{aligned}
& +\ln \left(\frac{2 b d x^{2}+2 \sqrt{b d x^{4}+a d x^{2}+b c x^{2}+a c} \sqrt{b d}+a d+b c}{2 \sqrt{b d}}\right) a^{2} d^{2}+2 \ln \left(\frac{2 b d x^{2}+2 \sqrt{b d x^{4}+a d x^{2}+b c x^{2}+a c} \sqrt{b d}+a d+b c}{2 \sqrt{b d}}\right) a c d b \\
& -3 b^{2} \ln \left(\frac{2 b d x^{2}+2 \sqrt{b d x^{4}+a d x^{2}+b c x^{2}+a c} \sqrt{b d}+a d+b c}{2 \sqrt{b d}}\right) c^{2}-2 \sqrt{b d x^{4}+a d x^{2}+b c x^{2}+a c} a d \sqrt{b d} \\
& \left.\left.+6 \sqrt{b d x^{4}+a d x^{2}+b c x^{2}+a c} c b \sqrt{b d}\right)\right)
\end{aligned}
$$

Problem 73: Result more than twice size of optimal antiderivative.

$$
\int \frac{\sqrt{\frac{e\left(b x^{2}+a\right)}{d x^{2}+c}}}{x^{3}} \mathrm{~d} x
$$

Optimal(type 3, 107 leaves, 4 steps):

$$
-\frac{(-a d+b c) \operatorname{arctanh}\left(\frac{\sqrt{c} \sqrt{\frac{e\left(b x^{2}+a\right)}{d x^{2}+c}}}{\sqrt{a} \sqrt{e}}\right) \sqrt{e}}{2 c^{3 / 2} \sqrt{a}}+\frac{(-a d+b c) \sqrt{\frac{e\left(b x^{2}+a\right)}{d x^{2}+c}}}{2 c\left(a-\frac{c\left(b x^{2}+a\right)}{d x^{2}+c}\right)}
$$

Result(type 3, 325 leaves):

$$
\begin{aligned}
& \frac{1}{4 \sqrt{\left(d x^{2}+c\right)\left(b x^{2}+a\right)} c^{2} a x^{2} \sqrt{a c}}\left(\sqrt { \frac { e (b x ^ { 2 } + a) } { d x ^ { 2 } + c } } (d x ^ { 2 } + c) \left(2 b d \sqrt{b d x^{4}+a d x^{2}+b c x^{2}+a c} x^{4} \sqrt{a c}\right.\right. \\
& \quad+a^{2} \ln \left(\frac{a d x^{2}+b c x^{2}+2 \sqrt{a c} \sqrt{b d x^{4}+a d x^{2}+b c x^{2}+a c}+2 a c}{x^{2}}\right) d c x^{2} \\
& \quad-\ln \left(\frac{a d x^{2}+b c x^{2}+2 \sqrt{a c} \sqrt{b d x^{4}+a d x^{2}+b c x^{2}+a c}+2 a c}{x^{2}}\right) b c^{2} a x^{2}+2 \sqrt{b d x^{4}+a d x^{2}+b c x^{2}+a c} d a x^{2} \sqrt{a c} \\
& \left.\left.+2 \sqrt{b d x^{4}+a d x^{2}+b c x^{2}+a c} b c x^{2} \sqrt{a c}-2\left(b d x^{4}+a d x^{2}+b c x^{2}+a c\right)^{3 / 2} \sqrt{a c}\right)\right)
\end{aligned}
$$

Problem 74: Result more than twice size of optimal antiderivative.

$$
\int x\left(\frac{e\left(b x^{2}+a\right)}{d x^{2}+c}\right)^{3 / 2} \mathrm{~d} x
$$

Optimal(type 3, 117 leaves, 5 steps):

$$
\frac{\left(\frac{e\left(b x^{2}+a\right)}{d x^{2}+c}\right)^{3 / 2}\left(d x^{2}+c\right)}{2 d}-\frac{3(-a d+b c) e^{3 / 2} \operatorname{arctanh}\left(\frac{\sqrt{d} \sqrt{\frac{e\left(b x^{2}+a\right)}{d x^{2}+c}}}{\sqrt{b} \sqrt{e}}\right) \sqrt{b}}{2 d^{5 / 2}}+\frac{3(-a d+b c) e \sqrt{\frac{e\left(b x^{2}+a\right)}{d x^{2}+c}}}{2 d^{2}}
$$

Result(type 3, 431 leaves):

$$
\begin{aligned}
& \frac{1}{4 d^{2} \sqrt{b d} \sqrt{\left(d x^{2}+c\right)\left(b x^{2}+a\right)}\left(b x^{2}+a\right)}\left(\left(3 \ln \left(\frac{2 b d x^{2}+2 \sqrt{b d x^{4}+a d x^{2}+b c x^{2}+a c} \sqrt{b d}+a d+b c}{2 \sqrt{b d}}\right) x^{2} a b d^{2}\right.\right. \\
& -3 \ln \left(\frac{2 b d x^{2}+2 \sqrt{b d x^{4}+a d x^{2}+b c x^{2}+a c} \sqrt{b d}+a d+b c}{2 \sqrt{b d}}\right) x^{2} b^{2} c d+2 \sqrt{b d x^{4}+a d x^{2}+b c x^{2}+a c} x^{2} d b \sqrt{b d} \\
& +3 \ln \left(\frac{2 b d x^{2}+2 \sqrt{b d x^{4}+a d x^{2}+b c x^{2}+a c} \sqrt{b d}+a d+b c}{2 \sqrt{b d}}\right) a c d b-3 b^{2} \ln \left(\frac{2 b d x^{2}+2 \sqrt{b d x^{4}+a d x^{2}+b c x^{2}+a c} \sqrt{b d}+a d+b c}{2 \sqrt{b d}}\right) c^{2} \\
& \left.\left.+2 \sqrt{b d x^{4}+a d x^{2}+b c x^{2}+a c} c b \sqrt{b d}-4 d \sqrt{\left(d x^{2}+c\right)\left(b x^{2}+a\right)} a \sqrt{b d}+4 \sqrt{\left(d x^{2}+c\right)\left(b x^{2}+a\right)} b c \sqrt{b d}\right)\left(d x^{2}+c\right)\left(\frac{e\left(b x^{2}+a\right)}{d x^{2}+c}\right)^{3 / 2}\right)
\end{aligned}
$$

Problem 75: Result more than twice size of optimal antiderivative.

$$
\int \frac{\left(\frac{e\left(b x^{2}+a\right)}{d x^{2}+c}\right)^{3 / 2}}{x^{5}} \mathrm{~d} x
$$

Optimal(type 3, 230 leaves, 6 steps):

$$
\begin{aligned}
& -\frac{3(-5 a d+b c)(-a d+b c) e^{3 / 2} \operatorname{arctanh}\left(\frac{\sqrt{c} \sqrt{\frac{e\left(b x^{2}+a\right)}{d x^{2}+c}}}{8 c^{7 / 2} \sqrt{a}}\right)}{\sqrt{a} \sqrt{e}}-\frac{d(-a d+b c) e \sqrt{\frac{e\left(b x^{2}+a\right)}{d x^{2}+c}}}{c^{3}}-\frac{a(-a d+b c)^{2} e^{3} \sqrt{\frac{e\left(b x^{2}+a\right)}{d x^{2}+c}}}{8 c^{3}\left(a e-\frac{c e\left(b x^{2}+a\right)}{d x^{2}+c}\right)} \\
& +\frac{(-9 a d+5 b c)(-a d+b c) e^{2} \sqrt{\frac{e\left(b x^{2}+a\right)}{d x^{2}+c}}}{4 c^{3}\left(a e-\frac{c e\left(b x^{2}+a\right)}{d x^{2}+c}\right)^{2}}
\end{aligned}
$$

Result(type 3, 1041 leaves):
$-\frac{1}{16 \sqrt{a c} a x^{4} c^{4} \sqrt{\left(d x^{2}+c\right)\left(b x^{2}+a\right)}\left(b x^{2}+a\right)}\left(\left(18 \sqrt{a c} \sqrt{b d x^{4}+a d x^{2}+b c x^{2}+a c} x^{8} a b d^{3}-6 \sqrt{a c} \sqrt{b d x^{4}+a d x^{2}+b c x^{2}+a c} x^{8} b^{2} c d^{2}\right.\right.$

$$
\begin{aligned}
& +15 \ln \left(\frac{a d x^{2}+b c x^{2}+2 \sqrt{a c} \sqrt{b d x^{4}+a d x^{2}+b c x^{2}+a c}+2 a c}{x^{2}}\right) x^{6} a^{3} c d^{3} \\
& -18 \ln \left(\frac{a d x^{2}+b c x^{2}+2 \sqrt{a c} \sqrt{b d x^{4}+a d x^{2}+b c x^{2}+a c}+2 a c}{x^{2}}\right) x^{6} a^{2} b c^{2} d^{2} \\
& +3 \ln \left(\frac{a d x^{2}+b c x^{2}+2 \sqrt{a c} \sqrt{b d x^{4}+a d x^{2}+b c x^{2}+a c}+2 a c}{x^{2}}\right) x^{6} a b^{2} c^{3} d+18 \sqrt{a c} \sqrt{b d x^{4}+a d x^{2}+b c x^{2}+a c} x^{6} a^{2} d^{3} \\
& +26 \sqrt{a c} \sqrt{b d x^{4}+a d x^{2}+b c x^{2}+a c} x^{6} a b c d^{2}-12 \sqrt{a c} \sqrt{b d x^{4}+a d x^{2}+b c x^{2}+a c} x^{6} b^{2} c^{2} d \\
& +15 \ln \left(\frac{a d x^{2}+b c x^{2}+2 \sqrt{a c} \sqrt{b d x^{4}+a d x^{2}+b c x^{2}+a c}+2 a c}{x^{2}}\right) x^{4} a^{3} c^{2} d^{2} \\
& -18 \ln \left(\frac{a d x^{2}+b c x^{2}+2 \sqrt{a c} \sqrt{b d x^{4}+a d x^{2}+b c x^{2}+a c}+2 a c}{x^{2}}\right) x^{4} a^{2} b c^{3} d \\
& +3 \ln \left(\frac{a d x^{2}+b c x^{2}+2 \sqrt{a c} \sqrt{b d x^{4}+a d x^{2}+b c x^{2}+a c}+2 a c}{x^{2}}\right) x^{4} a b^{2} c^{4}-18 \sqrt{a c}\left(b d x^{4}+a d x^{2}+b c x^{2}+a c\right)^{3 / 2} x^{4} a d^{2}+6 \sqrt{a c}\left(b d x^{4}\right. \\
& \left.+a d x^{2}+b c x^{2}+a c\right)^{3 / 2} x^{4} b c d+18 \sqrt{a c} \sqrt{b d x^{4}+a d x^{2}+b c x^{2}+a c} x^{4} a^{2} c d^{2}+8 \sqrt{a c} \sqrt{b d x^{4}+a d x^{2}+b c x^{2}+a c} x^{4} a b c^{2} d \\
& -6 \sqrt{a c} \sqrt{b d x^{4}+a d x^{2}+b c x^{2}+a c} x^{4} b^{2} c^{3}-16 d^{2} \sqrt{\left(d x^{2}+c\right)\left(b x^{2}+a\right)} a^{2} c x^{4} \sqrt{a c}+16 d \sqrt{\left(d x^{2}+c\right)\left(b x^{2}+a\right)} b c^{2} x^{4} a \sqrt{a c} \\
& \left.-14 \sqrt{a c}\left(b d x^{4}+a d x^{2}+b c x^{2}+a c\right)^{3 / 2} x^{2} a c d+6 \sqrt{a c}\left(b d x^{4}+a d x^{2}+b c x^{2}+a c\right)^{3 / 2} x^{2} b c^{2}+4 \sqrt{a c}\left(b d x^{4}+a d x^{2}+b c x^{2}+a c\right)^{3 / 2} a c^{2}\right) \\
& \left.\left(d x^{2}+c\right)\left(\frac{e\left(b x^{2}+a\right)}{d x^{2}+c}\right)^{3 / 2}\right)
\end{aligned}
$$

Problem 76: Result more than twice size of optimal antiderivative.

$$
\int \frac{\left(\frac{e\left(b x^{2}+a\right)}{d x^{2}+c}\right)^{3 / 2}}{x^{7}} \mathrm{~d} x
$$

Optimal(type 3, 336 leaves, 7 steps):

$$
\begin{aligned}
& \frac{(-a d+b c)^{3} e^{2}\left(\frac{e\left(b x^{2}+a\right)}{d x^{2}+c}\right)^{5 / 2}}{6 a c^{2}\left(a e-\frac{c e\left(b x^{2}+a\right)}{d x^{2}+c}\right)^{3}}+\frac{(-a d+b c)\left(-35 a^{2} d^{2}+10 b d a c+c^{2} b^{2}\right) e^{3 / 2} \operatorname{arctanh}\left(\frac{\sqrt{c} \sqrt{\frac{e\left(b x^{2}+a\right)}{d x^{2}+c}}}{\sqrt{a} \sqrt{e}}\right)}{16 a^{3 / 2} c^{9 / 2}} \\
& \quad+\frac{d^{2}(-a d+b c) e \sqrt{\frac{e\left(b x^{2}+a\right)}{d x^{2}+c}}}{c^{4}}+\frac{(-a d+b c)^{2}(11 a d+b c) e^{3} \sqrt{\frac{e\left(b x^{2}+a\right)}{d x^{2}+c}}}{24 c^{4}\left(a e-\frac{c e\left(b x^{2}+a\right)}{d x^{2}+c}\right)^{2}} \\
& -\frac{(-a d+b c)\left(-79 a^{2} d^{2}+50 b d a c+5 c^{2} b^{2}\right) e^{2} \sqrt{\frac{e\left(b x^{2}+a\right)}{d x^{2}+c}}}{48 a c^{4}\left(a e-\frac{c e\left(b x^{2}+a\right)}{d x^{2}+c}\right)}
\end{aligned}
$$

Result(type 3, 1497 leaves):

$$
\begin{aligned}
& \frac{1}{96 \sqrt{a c} x^{6} a^{2} c^{5} \sqrt{\left(d x^{2}+c\right)\left(b x^{2}+a\right)}\left(b x^{2}+a\right)}\left(\left(105 \ln \left(\frac{a d x^{2}+b c x^{2}+2 \sqrt{a c} \sqrt{b d x^{4}+a d x^{2}+b c x^{2}+a c}+2 a c}{x^{2}}\right) x^{6} a^{4} c^{2} d^{3}\right.\right. \\
& +3 \ln \left(\frac{a d x^{2}+b c x^{2}+2 \sqrt{a c} \sqrt{b d x^{4}+a d x^{2}+b c x^{2}+a c}+2 a c}{x^{2}}\right) x^{6} a b^{3} c^{5}-174 \sqrt{a c}\left(b d x^{4}+a d x^{2}+b c x^{2}+a c\right)^{3 / 2} x^{6} a^{2} d^{3} \\
& \\
& -6 \sqrt{a c} \sqrt{b d x^{4}+a d x^{2}+b c x^{2}+a c} x^{6} b^{3} c^{4}+6 \sqrt{a c}\left(b d x^{4}+a d x^{2}+b c x^{2}+a c\right)^{3 / 2} x^{4} b^{2} c^{3} \\
& \\
& +105 \ln \left(\frac{a d x^{2}+b c x^{2}+2 \sqrt{a c} \sqrt{b d x^{4}+a d x^{2}+b c x^{2}+a c}+2 a c}{x^{2}}\right) x^{8} a^{4} c d^{4}+174 \sqrt{a c} \sqrt{b d x^{4}+a d x^{2}+b c x^{2}+a c} x^{8} a^{3} d^{4} \\
& \\
& -16 \sqrt{a c}\left(b d x^{4}+a d x^{2}+b c x^{2}+a c\right)^{3 / 2} a^{2} c^{3}+3 \ln \left(\frac{a d x^{2}+b c x^{2}+2 \sqrt{a c} \sqrt{b d x^{4}+a d x^{2}+b c x^{2}+a c}+2 a c}{x^{2}}\right) x^{8} a b^{3} c^{4} d \\
& \\
& -12 \sqrt{a c} \sqrt{b d x^{4}+a d x^{2}+b c x^{2}+a c} x^{8} b^{3} c^{3} d-135 \ln \left(\frac{a d x^{2}+b c x^{2}+2 \sqrt{a c} \sqrt{b d x^{4}+a d x^{2}+b c x^{2}+a c}+2 a c}{x^{2}}\right) x^{6} a^{3} b c^{3} d^{2} \\
& \\
& +27 \ln \left(\frac{a d x^{2}+b c x^{2}+2 \sqrt{a c} \sqrt{b d x^{4}+a d x^{2}+b c x^{2}+a c}+2 a c}{x^{2}}\right) x^{6} a^{2} b^{2} c^{4} d+6 \sqrt{a c}\left(b d x^{4}+a d x^{2}+b c x^{2}+a c\right)^{3} / 2 \\
& x^{6} b^{2} c^{2} d \\
& \\
& +174 \sqrt{a c} \sqrt{b d x^{4}+a d x^{2}+b c x^{2}+a c} x^{6} a^{3} c d^{3}-96 d^{3} \sqrt{\left(d x^{2}+c\right)\left(b x^{2}+a\right)} a^{3} c x^{6} \sqrt{a c}-114 \sqrt{a c}\left(b d x^{4}+a d x^{2}+b c x^{2}+a c\right)^{3} / 2 \\
& x^{4} a^{2} c d^{2} \\
& \\
& +44 \sqrt{a c}\left(b d x^{4}+a d x^{2}+b c x^{2}+a c\right)^{3} / 2 x^{2} a^{2} c^{2} d-12 \sqrt{a c}\left(b d x^{4}+a d x^{2}+b c x^{2}+a c\right)^{3 / 2} x^{2} a b c^{3}
\end{aligned}
$$

$$
\begin{aligned}
& -6 \sqrt{a c} \sqrt{b d x^{4}+a d x^{2}+b c x^{2}+a c} x^{10} b^{3} c^{2} d^{2}-135 \ln \left(\frac{a d x^{2}+b c x^{2}+2 \sqrt{a c} \sqrt{b d x^{4}+a d x^{2}+b c x^{2}+a c}+2 a c}{x^{2}}\right) x^{8} a^{3} b c^{2} d^{3} \\
& +27 \ln \left(\frac{a d x^{2}+b c x^{2}+2 \sqrt{a c} \sqrt{b d x^{4}+a d x^{2}+b c x^{2}+a c}+2 a c}{x^{2}}\right) x^{8} a^{2} b^{2} c^{3} d^{2}+174 \sqrt{a c} \sqrt{b d x^{4}+a d x^{2}+b c x^{2}+a c} x^{10} a^{2} b d^{4} \\
& +60 \sqrt{a c}\left(b d x^{4}+a d x^{2}+b c x^{2}+a c\right)^{3 / 2} x^{4} a b c^{2} d-72 \sqrt{a c} \sqrt{b d x^{4}+a d x^{2}+b c x^{2}+a c} x^{10} a b^{2} c d^{3} \\
& +216 \sqrt{a c} \sqrt{b d x^{4}+a d x^{2}+b c x^{2}+a c} x^{8} a^{2} b c d^{3}-138 \sqrt{a c} \sqrt{b d x^{4}+a d x^{2}+b c x^{2}+a c} x^{8} a b^{2} c^{2} d^{2}+72 \sqrt{a c}\left(b d x^{4}+a d x^{2}+b c x^{2}\right. \\
& +a c)^{3 / 2} x^{6} a b c d^{2}+42 \sqrt{a c} \sqrt{b d x^{4}+a d x^{2}+b c x^{2}+a c} x^{6} a^{2} b c^{2} d^{2}-66 \sqrt{a c} \sqrt{b d x^{4}+a d x^{2}+b c x^{2}+a c} x^{6} a b^{2} c^{3} d \\
& \left.\left.+96 d^{2} \sqrt{\left(d x^{2}+c\right)\left(b x^{2}+a\right)} b c^{2} a^{2} x^{6} \sqrt{a c}\right)\left(d x^{2}+c\right)\left(\frac{e\left(b x^{2}+a\right)}{d x^{2}+c}\right)^{3 / 2}\right)
\end{aligned}
$$

Problem 77: Result more than twice size of optimal antiderivative.

$$
\int x^{2}\left(\frac{e\left(b x^{2}+a\right)}{d x^{2}+c}\right)^{3 / 2} \mathrm{~d} x
$$

Optimal(type 4, 350 leaves, 7 steps):

$$
-\frac{(-7 a d+8 b c) e x \sqrt{\frac{e\left(b x^{2}+a\right)}{d x^{2}+c}}}{3 d^{2}}-\frac{e x\left(b x^{2}+a\right) \sqrt{\frac{e\left(b x^{2}+a\right)}{d x^{2}+c}}}{d}+\frac{4 b e x\left(d x^{2}+c\right) \sqrt{\frac{e\left(b x^{2}+a\right)}{d x^{2}+c}}}{3 d^{2}}
$$

$$
+\frac{\left.(-7 a d+8 b c) e \sqrt{\frac{1}{1+\frac{d x^{2}}{c}}} \sqrt{1+\frac{d x^{2}}{c}} \text { EllipticE } \frac{x \sqrt{d}}{\sqrt{c} \sqrt{1+\frac{d x^{2}}{c}}}, \sqrt{1-\frac{b c}{a d}}\right) \sqrt{c} \sqrt{\frac{e\left(b x^{2}+a\right)}{d x^{2}+c}}}{3 d^{5} / 2 \sqrt{\frac{c\left(b x^{2}+a\right)}{a\left(d x^{2}+c\right)}}}
$$

$$
-\frac{\left.(-3 a d+4 b c) e \sqrt{\frac{1}{1+\frac{d x^{2}}{c}}} \sqrt{1+\frac{d x^{2}}{c}} \text { EllipticF } \frac{x \sqrt{d}}{\sqrt{c} \sqrt{1+\frac{d x^{2}}{c}}}, \sqrt{1-\frac{b c}{a d}}\right) \sqrt{c} \sqrt{\frac{e\left(b x^{2}+a\right)}{d x^{2}+c}}}{3 d^{5 / 2 \sqrt{\frac{c\left(b x^{2}+a\right)}{a\left(d x^{2}+c\right)}}}}
$$

Result(type 4, 733 leaves):

$$
\frac{1}{3\left(b x^{2}+a\right)^{2} d^{3} \sqrt{-\frac{b}{a}} \sqrt{b d x^{4}+a d x^{2}+b c x^{2}+a c}}\left((\frac { e (b x ^ { 2 } + a) } { d x ^ { 2 } + c }) ^ { 3 / 2 } (d x ^ { 2 } + c) \left(\sqrt{-\frac{b}{a}} \sqrt{\left(d x^{2}+c\right)\left(b x^{2}+a\right)} x^{5} b^{2} d^{2}\right.\right.
$$

$$
\begin{aligned}
& -3 \sqrt{-\frac{b}{a}} \sqrt{b d x^{4}+a d x^{2}+b c x^{2}+a c} x^{3} a b d^{2}+3 \sqrt{-\frac{b}{a}} \sqrt{b d x^{4}+a d x^{2}+b c x^{2}+a c} x^{3} b^{2} c d+\sqrt{-\frac{b}{a}} \sqrt{\left(d x^{2}+c\right)\left(b x^{2}+a\right)} x^{3} a b d^{2} \\
& +\sqrt{-\frac{b}{a}} \sqrt{\left(d x^{2}+c\right)\left(b x^{2}+a\right)} x^{3} b^{2} c d+3 \sqrt{\frac{b x^{2}+a}{a}} \sqrt{\frac{d x^{2}+c}{c}} \operatorname{EllipticF}\left(x \sqrt{-\frac{b}{a}}, \sqrt{\frac{a d}{b c}}\right) \sqrt{\left(d x^{2}+c\right)\left(b x^{2}+a\right)} a^{2} d^{2} \\
& -11 \sqrt{\frac{b x^{2}+a}{a}} \sqrt{\frac{d x^{2}+c}{c}} \operatorname{EllipticF}\left(x \sqrt{-\frac{b}{a}}, \sqrt{\frac{a d}{b c}}\right) \sqrt{\left(d x^{2}+c\right)\left(b x^{2}+a\right)} a b c d+8 \sqrt{\frac{b x^{2}+a}{a}} \sqrt{\frac{d x^{2}+c}{c}} \operatorname{EllipticF}\left(x \sqrt{-\frac{b}{a}},\right. \\
& \left.\sqrt{\frac{a d}{b c}}\right) \sqrt{\left(d x^{2}+c\right)\left(b x^{2}+a\right)} b^{2} c^{2}+7 \sqrt{\frac{b x^{2}+a}{a}} \sqrt{\frac{d x^{2}+c}{c}} \operatorname{EllipticE}\left(x \sqrt{-\frac{b}{a}}, \sqrt{\frac{a d}{b c}}\right) \sqrt{\left(d x^{2}+c\right)\left(b x^{2}+a\right)} a b c d \\
& -8 \sqrt{\frac{b x^{2}+a}{a}} \sqrt{\frac{d x^{2}+c}{c}} \operatorname{EllipticE}\left(x \sqrt{-\frac{b}{a}}, \sqrt{\frac{a d}{b c}}\right) \sqrt{\left(d x^{2}+c\right)\left(b x^{2}+a\right)} b^{2} c^{2}-3 \sqrt{-\frac{b}{a}} \sqrt{b d x^{4}+a d x^{2}+b c x^{2}+a c} x a^{2} d^{2} \\
& \left.\left.+3 \sqrt{-\frac{b}{a}} \sqrt{b d x^{4}+a d x^{2}+b c x^{2}+a c} x a b c d+\sqrt{-\frac{b}{a}} \sqrt{\left(d x^{2}+c\right)\left(b x^{2}+a\right)} x a b c d\right)\right)
\end{aligned}
$$

Problem 80: Result more than twice size of optimal antiderivative.

$$
\int_{x \sqrt{\frac{e\left(b x^{2}+a\right)}{d x^{2}+c}}} \mathrm{~d} x
$$

Optimal(type 3, 84 leaves, 5 steps):

$$
-\frac{\operatorname{arctanh}\left(\frac{\sqrt{c} \sqrt{\frac{e\left(b x^{2}+a\right)}{d x^{2}+c}}}{\sqrt{a} \sqrt{e}}\right) \sqrt{c}}{\sqrt{a} \sqrt{e}}+\frac{\operatorname{arctanh}\left(\frac{\sqrt{d} \sqrt{\frac{e\left(b x^{2}+a\right)}{d x^{2}+c}}}{\sqrt{b} \sqrt{e}}\right) \sqrt{d}}{\sqrt{b} \sqrt{e}}
$$

Result(type 3, 178 leaves):
$-\frac{1}{2 \sqrt{\frac{e\left(b x^{2}+a\right)}{d x^{2}+c}} \sqrt{\left(d x^{2}+c\right)\left(b x^{2}+a\right)} \sqrt{b d} \sqrt{a c}}\left(\left(b x^{2}+a\right)\left(c \ln \left(\frac{a d x^{2}+b c x^{2}+2 \sqrt{a c} \sqrt{b d x^{4}+a d x^{2}+b c x^{2}+a c}+2 a c}{x^{2}}\right) \sqrt{b d}\right.\right.$
$\left.\left.\quad-\ln \left(\frac{2 b d x^{2}+2 \sqrt{b d x^{4}+a d x^{2}+b c x^{2}+a c} \sqrt{b d}+a d+b c}{2 \sqrt{b d}}\right) d \sqrt{a c}\right)\right)$

Problem 82: Result more than twice size of optimal antiderivative.

$$
\int \frac{x}{\left(\frac{e\left(b x^{2}+a\right)}{d x^{2}+c}\right)^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 3, 122 leaves, 5 steps):

$$
\frac{3(-a d+b c) \operatorname{arctanh}\left(\frac{\sqrt{d} \sqrt{\frac{e\left(b x^{2}+a\right)}{d x^{2}+c}}}{\sqrt{b} \sqrt{e}}\right) \sqrt{d}}{2 b^{5 / 2} e^{3 / 2}}-\frac{3(-a d+b c)}{2 b^{2} e \sqrt{\frac{e\left(b x^{2}+a\right)}{d x^{2}+c}}}+\frac{2 b e \sqrt{\frac{e\left(b x^{2}+a\right)}{d x^{2}+c}}}{2 x^{2}+c}
$$

Result(type 3, 431 leaves):

$$
\begin{aligned}
& -\frac{1}{4 b^{2} \sqrt{b d} \sqrt{\left(d x^{2}+c\right)\left(b x^{2}+a\right)}\left(d x^{2}+c\right)\left(\frac{e\left(b x^{2}+a\right)}{d x^{2}+c}\right)^{3 / 2}}\left(\left(3 \ln \left(\frac{2 b d x^{2}+2 \sqrt{b d x^{4}+a d x^{2}+b c x^{2}+a c} \sqrt{b d}+a d+b c}{2 \sqrt{b d}}\right) x^{2} a b d^{2}\right.\right. \\
& -3 \ln \left(\frac{2 b d x^{2}+2 \sqrt{b d x^{4}+a d x^{2}+b c x^{2}+a c} \sqrt{b d}+a d+b c}{2 \sqrt{b d}}\right) x^{2} b^{2} c d-2 \sqrt{b d x^{4}+a d x^{2}+b c x^{2}+a c} x^{2} d b \sqrt{b d} \\
& +3 \ln \left(\frac{2 b d x^{2}+2 \sqrt{b d x^{4}+a d x^{2}+b c x^{2}+a c} \sqrt{b d}+a d+b c}{2 \sqrt{b d}}\right) a^{2} d^{2}-3 \ln \left(\frac{2 b d x^{2}+2 \sqrt{b d x^{4}+a d x^{2}+b c x^{2}+a c} \sqrt{b d}+a d+b c}{2 \sqrt{b d}}\right) a c d b \\
& \left.\left.-2 \sqrt{b d x^{4}+a d x^{2}+b c x^{2}+a c} a d \sqrt{b d}-4 d \sqrt{\left(d x^{2}+c\right)\left(b x^{2}+a\right)} a \sqrt{b d}+4 \sqrt{\left(d x^{2}+c\right)\left(b x^{2}+a\right)} b c \sqrt{b d}\right)\left(b x^{2}+a\right)\right)
\end{aligned}
$$

Problem 83: Result more than twice size of optimal antiderivative.

$$
\int \frac{1}{x^{5}\left(\frac{e\left(b x^{2}+a\right)}{d x^{2}+c}\right)^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 3, 229 leaves, 6 steps):
$-\frac{3(-a d+b c)(-a d+5 b c) \operatorname{arctanh}\left(\frac{\sqrt{c} \sqrt{\frac{e\left(b x^{2}+a\right)}{d x^{2}+c}}}{\sqrt{a} \sqrt{e}}\right)}{8 a^{7 / 2} e^{3 / 2} \sqrt{c}}+\frac{b(-a d+b c)}{a^{3} e \sqrt{\frac{e\left(b x^{2}+a\right)}{d x^{2}+c}}}-\frac{(-a d+b c)^{2} \sqrt{\frac{e\left(b x^{2}+a\right)}{d x^{2}+c}}}{4 a^{2}\left(a e-\frac{c e\left(b x^{2}+a\right)}{d x^{2}+c}\right)^{2}}$

$$
-\frac{(-3 a d+7 b c)(-a d+b c) \sqrt{\frac{e\left(b x^{2}+a\right)}{d x^{2}+c}}}{8 a^{3}\left(a e^{2}-\frac{c e^{2}\left(b x^{2}+a\right)}{d x^{2}+c}\right)}
$$

Result(type 3, 1041 leaves):
$-\frac{1}{16 \sqrt{a c} c x^{4} a^{4} \sqrt{\left(d x^{2}+c\right)\left(b x^{2}+a\right)}\left(d x^{2}+c\right)\left(\frac{e\left(b x^{2}+a\right)}{d x^{2}+c}\right)^{3 / 2}}\left(\left(-6 \sqrt{a c} \sqrt{b d x^{4}+a d x^{2}+b c x^{2}+a c} x^{8} a b^{2} d^{2}\right.\right.$ $+18 \sqrt{a c} \sqrt{b d x^{4}+a d x^{2}+b c x^{2}+a c} x^{8} b^{3} c d+3 \ln \left(\frac{a d x^{2}+b c x^{2}+2 \sqrt{a c} \sqrt{b d x^{4}+a d x^{2}+b c x^{2}+a c}+2 a c}{x^{2}}\right) x^{6} a^{3} b c d^{2}$
$-18 \ln \left(\frac{a d x^{2}+b c x^{2}+2 \sqrt{a c} \sqrt{b d x^{4}+a d x^{2}+b c x^{2}+a c}+2 a c}{x^{2}}\right) x^{6} a^{2} b^{2} c^{2} d$
$+15 \ln \left(\frac{a d x^{2}+b c x^{2}+2 \sqrt{a c} \sqrt{b d x^{4}+a d x^{2}+b c x^{2}+a c}+2 a c}{x^{2}}\right) x^{6} a b^{3} c^{3}-12 \sqrt{a c} \sqrt{b d x^{4}+a d x^{2}+b c x^{2}+a c} x^{6} a^{2} b d^{2}$
$+26 \sqrt{a c} \sqrt{b d x^{4}+a d x^{2}+b c x^{2}+a c} x^{6} a b^{2} c d+18 \sqrt{a c} \sqrt{b d x^{4}+a d x^{2}+b c x^{2}+a c} x^{6} b^{3} c^{2}$
$+3 \ln \left(\frac{a d x^{2}+b c x^{2}+2 \sqrt{a c} \sqrt{b d x^{4}+a d x^{2}+b c x^{2}+a c}+2 a c}{x^{2}}\right) x^{4} a^{4} c d^{2}$
$-18 \ln \left(\frac{a d x^{2}+b c x^{2}+2 \sqrt{a c} \sqrt{b d x^{4}+a d x^{2}+b c x^{2}+a c}+2 a c}{x^{2}}\right) x^{4} a^{3} b c^{2} d$
$+15 \ln \left(\frac{a d x^{2}+b c x^{2}+2 \sqrt{a c} \sqrt{b d x^{4}+a d x^{2}+b c x^{2}+a c}+2 a c}{x^{2}}\right) x^{4} a^{2} b^{2} c^{3}+6 \sqrt{a c}\left(b d x^{4}+a d x^{2}+b c x^{2}+a c\right)^{3 / 2} x^{4} a b d$
$-18 \sqrt{a c}\left(b d x^{4}+a d x^{2}+b c x^{2}+a c\right)^{3 / 2} x^{4} b^{2} c-6 \sqrt{a c} \sqrt{b d x^{4}+a d x^{2}+b c x^{2}+a c} x^{4} a^{3} d^{2}+8 \sqrt{a c} \sqrt{b d x^{4}+a d x^{2}+b c x^{2}+a c} x^{4} a^{2} b c d$
$+18 \sqrt{a c} \sqrt{b d x^{4}+a d x^{2}+b c x^{2}+a c} x^{4} a b^{2} c^{2}+16 d \sqrt{\left(d x^{2}+c\right)\left(b x^{2}+a\right)} b a^{2} x^{4} c \sqrt{a c}-16 b^{2} \sqrt{\left(d x^{2}+c\right)\left(b x^{2}+a\right)} c^{2} a x^{4} \sqrt{a c}$
$\left.+6 \sqrt{a c}\left(b d x^{4}+a d x^{2}+b c x^{2}+a c\right)^{3 / 2} x^{2} a^{2} d-14 \sqrt{a c}\left(b d x^{4}+a d x^{2}+b c x^{2}+a c\right)^{3 / 2} x^{2} a b c+4 \sqrt{a c}\left(b d x^{4}+a d x^{2}+b c x^{2}+a c\right)^{3 / 2} a^{2} c\right)$
$\left.\left(b x^{2}+a\right)\right)$

[^0]$$
\int x^{3}\left(a+\frac{b}{d x^{2}+c}\right)^{3 / 2} \mathrm{~d} x
$$

Optimal(type 3, 154 leaves, 7 steps):
$\frac{3 b(-4 a c+b) \operatorname{arctanh}\left(\frac{\sqrt{\frac{a d x^{2}+a c+b}{d x^{2}+c}}}{\sqrt{a}}\right)}{8 d^{2} \sqrt{a}}+\frac{b c \sqrt{\frac{a d x^{2}+a c+b}{d x^{2}+c}}}{d^{2}}+\frac{(-4 a c+5 b)\left(d x^{2}+c\right) \sqrt{\frac{a d x^{2}+a c+b}{d x^{2}+c}}}{8 d^{2}}$

$$
+\frac{a\left(d x^{2}+c\right)^{2} \sqrt{\frac{a d x^{2}+a c+b}{d x^{2}+c}}}{4 d^{2}}
$$

Result(type 3, 592 leaves):
$\frac{1}{16 d^{2} \sqrt{a d^{2}} \sqrt{\left(d x^{2}+c\right)\left(a d x^{2}+a c+b\right)}}\left(\left(4 \sqrt{a d^{2}} \sqrt{x^{4} a d^{2}+2 x^{2} a c d+b d x^{2}+c^{2} a+b c} x^{4} a d^{2}\right.\right.$

$$
\begin{aligned}
& -12 \ln \left(\frac{2 a d^{2} x^{2}+2 a c d+2 \sqrt{x^{4} a d^{2}+2 x^{2} a c d+b d x^{2}+c^{2} a+b c} \sqrt{a d^{2}}+b d}{2 \sqrt{a d^{2}}}\right) x^{2} a b c d^{2} \\
& +3 \ln \left(\frac{2 a d^{2} x^{2}+2 a c d+2 \sqrt{x^{4} a d^{2}+2 x^{2} a c d+b d x^{2}+c^{2} a+b c} \sqrt{a d^{2}}+b d}{2 \sqrt{a d^{2}}}\right) x^{2} b^{2} d^{2}+10 \sqrt{a d^{2}} \sqrt{x^{4} a d^{2}+2 x^{2} a c d+b d x^{2}+c^{2} a+b c} x^{2} b d \\
& -12 \ln \left(\frac{2 a d^{2} x^{2}+2 a c d+2 \sqrt{x^{4} a d^{2}+2 x^{2} a c d+b d x^{2}+c^{2} a+b c} \sqrt{a d^{2}}+b d}{2 \sqrt{a d^{2}}}\right) a b c^{2} d-4 \sqrt{a d^{2}} \sqrt{x^{4} a d^{2}+2 x^{2} a c d+b d x^{2}+c^{2} a+b c} a c^{2} \\
& +3 \ln \left(\frac{2 a d^{2} x^{2}+2 a c d+2 \sqrt{x^{4} a d^{2}+2 x^{2} a c d+b d x^{2}+c^{2} a+b c} \sqrt{a d^{2}}+b d}{2 \sqrt{a d^{2}}}\right) b^{2} c d+16 b c \sqrt{\left(d x^{2}+c\right)\left(a d x^{2}+a c+b\right)} \sqrt{a d^{2}} \\
& \left.\left.+10 \sqrt{a d^{2}} \sqrt{x^{4} a d^{2}+2 x^{2} a c d+b d x^{2}+c^{2} a+b c} b c\right) \sqrt{\frac{a d x^{2}+a c+b}{d x^{2}+c}}\right)
\end{aligned}
$$

Problem 88: Result more than twice size of optimal antiderivative.

$$
\int x\left(a+\frac{b}{d x^{2}+c}\right)^{3 / 2} \mathrm{~d} x
$$

Optimal(type 3, 78 leaves, 6 steps):

$$
\frac{\left(d x^{2}+c\right)\left(a+\frac{b}{d x^{2}+c}\right)^{3 / 2}}{2 d}+\frac{3 b \operatorname{arctanh}\left(\frac{\sqrt{a+\frac{b}{d x^{2}+c}}}{\sqrt{a}}\right) \sqrt{a}}{2 d}-\frac{3 b \sqrt{a+\frac{b}{d x^{2}+c}}}{2 d}
$$

Result(type 3, 335 leaves):

$$
\begin{aligned}
& -\frac{1}{4 d \sqrt{a d^{2}} \sqrt{\left(d x^{2}+c\right)\left(a d x^{2}+a c+b\right)}}\left(\left(-3 \ln \left(\frac{2 a d^{2} x^{2}+2 a c d+2 \sqrt{x^{4} a d^{2}+2 x^{2} a c d+b d x^{2}+c^{2} a+b c} \sqrt{a d^{2}}+b d}{2 \sqrt{a d^{2}}}\right) x^{2} a b d^{2}\right.\right. \\
& -2 a \sqrt{x^{4} a d^{2}+2 x^{2} a c d+b d x^{2}+c^{2} a+b c} x^{2} d \sqrt{a d^{2}}-3 b \ln \left(\frac{2 a d^{2} x^{2}+2 a c d+2 \sqrt{x^{4} a d^{2}+2 x^{2} a c d+b d x^{2}+c^{2} a+b c} \sqrt{a d^{2}}+b d}{2 \sqrt{a d^{2}}}\right) a c d \\
& \left.\left.-2 a \sqrt{x^{4} a d^{2}+2 x^{2} a c d+b d x^{2}+c^{2} a+b c} c \sqrt{a d^{2}}+4 b \sqrt{\left(d x^{2}+c\right)\left(a d x^{2}+a c+b\right)} \sqrt{a d^{2}}\right) \sqrt{\frac{a d x^{2}+a c+b}{d x^{2}+c}}\right)
\end{aligned}
$$

Problem 89: Result more than twice size of optimal antiderivative.

$$
\int \frac{\left(a+\frac{b}{d x^{2}+c}\right)^{3 / 2}}{x^{3}} \mathrm{~d} x
$$

Optimal(type 3, 118 leaves, 6 steps):

$$
-\frac{\left(d x^{2}+c\right)\left(\frac{a d x^{2}+a c+b}{d x^{2}+c}\right)^{3 / 2}}{2 c x^{2}}+\frac{3 b d \operatorname{arctanh}\left(\frac{\sqrt{c} \sqrt{\frac{a d x^{2}+a c+b}{d x^{2}+c}}}{\sqrt{a c+b}}\right) \sqrt{a c+b}}{2 c^{5 / 2}}-\frac{3 b d \sqrt{\frac{a d x^{2}+a c+b}{d x^{2}+c}}}{2 c^{2}}
$$

Result(type 3, 819 leaves):
$-\frac{1}{4 \sqrt{c^{2} a+b c} x^{2} c^{3} \sqrt{\left(d x^{2}+c\right)\left(a d x^{2}+a c+b\right)}}\left(\sqrt{\frac{a d x^{2}+a c+b}{d x^{2}+c}}\left(-2 \sqrt{c^{2} a+b c} \sqrt{x^{4} a d^{2}+2 x^{2} a c d+b d x^{2}+c^{2} a+b c} x^{6} a d^{3}\right.\right.$
$-3 \ln \left(\frac{2 x^{2} a c d+b d x^{2}+2 c^{2} a+2 \sqrt{c^{2} a+b c} \sqrt{x^{4} a d^{2}+2 x^{2} a c d+b d x^{2}+c^{2} a+b c}+2 b c}{x^{2}}\right) x^{4} a b c^{2} d^{2}$
$-6 \sqrt{c^{2} a+b c} \sqrt{x^{4} a d^{2}+2 x^{2} a c d+b d x^{2}+c^{2} a+b c} x^{4} a c d^{2}$
$-3 \ln \left(\frac{2 x^{2} a c d+b d x^{2}+2 c^{2} a+2 \sqrt{c^{2} a+b c} \sqrt{x^{4} a d^{2}+2 x^{2} a c d+b d x^{2}+c^{2} a+b c}+2 b c}{x^{2}}\right) x^{4} b^{2} c d^{2}$
$-2 \sqrt{c^{2} a+b c} \sqrt{x^{4} a d^{2}+2 x^{2} a c d+b d x^{2}+c^{2} a+b c} x^{4} b d^{2}$
$-3 \ln \left(\frac{2 x^{2} a c d+b d x^{2}+2 c^{2} a+2 \sqrt{c^{2} a+b c} \sqrt{x^{4} a d^{2}+2 x^{2} a c d+b d x^{2}+c^{2} a+b c}+2 b c}{x^{2}}\right) x^{2} a b c^{3} d$
$-4 \sqrt{c^{2} a+b c} \sqrt{x^{4} a d^{2}+2 x^{2} a c d+b d x^{2}+c^{2} a+b c} x^{2} a c^{2} d$
$-3 \ln \left(\frac{2 x^{2} a c d+b d x^{2}+2 c^{2} a+2 \sqrt{c^{2} a+b c} \sqrt{x^{4} a d^{2}+2 x^{2} a c d+b d x^{2}+c^{2} a+b c}+2 b c}{x^{2}}\right) x^{2} b^{2} c^{2} d$
$+4 \sqrt{\left(d x^{2}+c\right)\left(a d x^{2}+a c+b\right)} \sqrt{c^{2} a+b c} x^{2} b c d+2 \sqrt{c^{2} a+b c}\left(x^{4} a d^{2}+2 x^{2} a c d+b d x^{2}+c^{2} a+b c\right)^{3 / 2} x^{2} d$
$\left.\left.-2 \sqrt{c^{2} a+b c} \sqrt{x^{4} a d^{2}+2 x^{2} a c d+b d x^{2}+c^{2} a+b c} x^{2} b c d+2 \sqrt{c^{2} a+b c}\left(x^{4} a d^{2}+2 x^{2} a c d+b d x^{2}+c^{2} a+b c\right)^{3 / 2} c\right)\right)$

Problem 90: Result more than twice size of optimal antiderivative.

$$
\int \frac{\left(a+\frac{b}{d x^{2}+c}\right)^{3 / 2}}{x^{7}} \mathrm{~d} x
$$

Optimal(type 3, 266 leaves, 8 steps):

$$
\begin{aligned}
-\frac{\left(d x^{2}+c\right)^{3}\left(\frac{a d x^{2}+a c+b}{d x^{2}+c}\right)^{5 / 2}}{6 c^{2}(a c+b) x^{6}}+\frac{b\left(24 a^{2} c^{2}+60 a b c+35 b^{2}\right) d^{3} \operatorname{arctanh}\left(\frac{\sqrt{c} \sqrt{\frac{a d x^{2}+a c+b}{d x^{2}+c}}}{\sqrt{a c+b}}\right)}{16 c^{9 / 2}(a c+b)^{3 / 2}}-\frac{b d^{3} \sqrt{\frac{a d x^{2}+a c+b}{d x^{2}+c}}}{c^{4}} \\
-\frac{\left(24 a^{2} c^{2}+108 a b c+79 b^{2}\right) d^{2}\left(d x^{2}+c\right) \sqrt{\frac{a d x^{2}+a c+b}{d x^{2}+c}}}{48 c^{4}(a c+b) x^{2}}+\frac{(12 a c+11 b) d\left(d x^{2}+c\right)^{2} \sqrt{\frac{a d x^{2}+a c+b}{d x^{2}+c}}}{24 c^{4} x^{4}}
\end{aligned}
$$

Result(type ?, 2604 leaves): Display of huge result suppressed!
Problem 91: Result more than twice size of optimal antiderivative.

$$
\int x^{2}\left(a+\frac{b}{d x^{2}+c}\right)^{3 / 2} \mathrm{~d} x
$$

Optimal(type 4, 371 leaves, 8 steps):
$\frac{(-a c+7 b) x \sqrt{\frac{a d x^{2}+a c+b}{d x^{2}+c}}}{3 d}+\frac{4 a x\left(d x^{2}+c\right) \sqrt{\frac{a d x^{2}+a c+b}{d x^{2}+c}}}{3 d}-\frac{x\left(a d x^{2}+a c+b\right) \sqrt{\frac{a d x^{2}+a c+b}{d x^{2}+c}}}{d}$

Result(type 4, 822 leaves):
$-\frac{1}{3 d \sqrt{x^{4} a d^{2}+2 x^{2} a c d+b d x^{2}+c^{2} a+b c} \sqrt{-\frac{a d}{a c+b}}\left(a d x^{2}+a c+b\right)}\left(\left(-\sqrt{\left(d x^{2}+c\right)\left(a d x^{2}+a c+b\right)} \sqrt{-\frac{a d}{a c+b}} x^{5} a^{2} d^{2}\right.\right.$ $-2 \sqrt{\left(d x^{2}+c\right)\left(a d x^{2}+a c+b\right)} \sqrt{-\frac{a d}{a c+b}} x^{3} a^{2} c d+\sqrt{\frac{d x^{2}+c}{c}} \sqrt{\left(d x^{2}+c\right)\left(a d x^{2}+a c+b\right)} \sqrt{\frac{a d x^{2}+a c+b}{a c+b}}$ EllipticE $\left(x \sqrt{-\frac{a d}{a c+b}}\right.$,
$\left.\sqrt{\frac{a c+b}{a c}}\right) a^{2} c^{2}-\sqrt{\left(d x^{2}+c\right)\left(a d x^{2}+a c+b\right)} \sqrt{-\frac{a d}{a c+b}} x^{3} a b d+3 \sqrt{x^{4} a d^{2}+2 x^{2} a c d+b d x^{2}+c^{2} a+b c} \sqrt{-\frac{a d}{a c+b}} x^{3} a b d$
$+5 \sqrt{\frac{d x^{2}+c}{c}} \sqrt{\left(d x^{2}+c\right)\left(a d x^{2}+a c+b\right)} \sqrt{\frac{a d x^{2}+a c+b}{a c+b}}$ EllipticF $\left(x \sqrt{-\frac{a d}{a c+b}}, \sqrt{\frac{a c+b}{a c}}\right) a b c$
$-7 \sqrt{\frac{d x^{2}+c}{c}} \sqrt{\left(d x^{2}+c\right)\left(a d x^{2}+a c+b\right)} \sqrt{\frac{a d x^{2}+a c+b}{a c+b}}$ EllipticE $\left(x \sqrt{-\frac{a d}{a c+b}}, \sqrt{\frac{a c+b}{a c}}\right) a b c$
$-\sqrt{\left(d x^{2}+c\right)\left(a d x^{2}+a c+b\right)} \sqrt{-\frac{a d}{a c+b}} x a^{2} c^{2}-3 \sqrt{\frac{d x^{2}+c}{c}} \sqrt{\left(d x^{2}+c\right)\left(a d x^{2}+a c+b\right)} \sqrt{\frac{a d x^{2}+a c+b}{a c+b}}$ EllipticF $\left(x \sqrt{-\frac{a d}{a c+b}}\right.$,
$\left.\sqrt{\frac{a c+b}{a c}}\right) b^{2}-\sqrt{\left(d x^{2}+c\right)\left(a d x^{2}+a c+b\right)} \sqrt{-\frac{a d}{a c+b}} x a b c+3 \sqrt{x^{4} a d^{2}+2 x^{2} a c d+b d x^{2}+c^{2} a+b c} \sqrt{-\frac{a d}{a c+b}} x a b c$
$\left.\left.+3 \sqrt{x^{4} a d^{2}+2 x^{2} a c d+b d x^{2}+c^{2} a+b c} \sqrt{-\frac{a d}{a c+b}} x b^{2}\right) \sqrt{\frac{a d x^{2}+a c+b}{d x^{2}+c}}\right)$

Problem 92: Result more than twice size of optimal antiderivative.

$$
\int \frac{\left(a+\frac{b}{d x^{2}+c}\right)^{3 / 2}}{x^{6}} \mathrm{~d} x
$$

Optimal(type 4, 526 leaves, 10 steps):

$$
\begin{aligned}
& \frac{b \sqrt{\frac{a d x^{2}+a c+b}{d x^{2}+c}}}{c x^{5}}+\frac{\left(a^{2} c^{2}+16 a b c+16 b^{2}\right) d^{3} x \sqrt{\frac{a d x^{2}+a c+b}{d x^{2}+c}}}{5 c^{4}(a c+b)}-\frac{(a c+6 b)\left(d x^{2}+c\right) \sqrt{\frac{a d x^{2}+a c+b}{d x^{2}+c}}}{5 c^{2} x^{5}} \\
& +\frac{(a c+8 b) d\left(d x^{2}+c\right) \sqrt{\frac{a d x^{2}+a c+b}{d x^{2}+c}}}{5 c^{3} x^{3}}
\end{aligned}
$$

$$
-\underline{\left(a^{2} c^{2}+16 a b c+16 b^{2}\right) d^{5} / 2 \sqrt{\frac{1}{1+\frac{d x^{2}}{c}}} \sqrt{1+\frac{d x^{2}}{c}} \text { EllipticE }\left(\frac{x \sqrt{d}}{\sqrt{c} \sqrt{1+\frac{d x^{2}}{c}}}, \sqrt{\frac{b}{a c+b}}\right) \sqrt{\frac{a d x^{2}+a c+b}{d x^{2}+c}}}
$$

$$
5 c^{7 / 2}(a c+b) \sqrt{\frac{c\left(a d x^{2}+a c+b\right)}{(a c+b)\left(d x^{2}+c\right)}}
$$

$$
+\frac{a(a c+8 b) d^{5 / 2} \sqrt{\frac{1}{1+\frac{d x^{2}}{c}}} \sqrt{1+\frac{d x^{2}}{c}} \text { EllipticF }\left(\frac{x \sqrt{d}}{\sqrt{c} \sqrt{1+\frac{d x^{2}}{c}}}, \sqrt{\frac{b}{a c+b}}\right) \sqrt{\frac{a d x^{2}+a c+b}{d x^{2}+c}}}{}
$$

Result(type 4, 1665 leaves):

$$
5 c^{5 / 2}(a c+b) \sqrt{\frac{c\left(a d x^{2}+a c+b\right)}{(a c+b)\left(d x^{2}+c\right)}}
$$

$-\left(\left(5 \sqrt{x^{4} a d^{2}+2 x^{2} a c d+b d x^{2}+c^{2} a+b c} \sqrt{-\frac{a d}{a c+b}} x^{6} b^{3} d^{3}+11 \sqrt{\left(d x^{2}+c\right)\left(a d x^{2}+a c+b\right)} \sqrt{-\frac{a d}{a c+b}} x^{6} b^{3} d^{3}\right.\right.$

$$
+3 \sqrt{\left(d x^{2}+c\right)\left(a d x^{2}+a c+b\right)} \sqrt{-\frac{a d}{a c+b}} a^{2} b c^{5}+3 \sqrt{\left(d x^{2}+c\right)\left(a d x^{2}+a c+b\right)} \sqrt{-\frac{a d}{a c+b} a b^{2} c^{4}}
$$

$$
-\sqrt{\frac{d x^{2}+c}{c}} \sqrt{\left(d x^{2}+c\right)\left(a d x^{2}+a c+b\right)} \sqrt{\frac{a d x^{2}+a c+b}{a c+b}} \text { EllipticE }\left(x \sqrt{-\frac{a d}{a c+b}}, \sqrt{\frac{a c+b}{a c}}\right) x^{5} a^{3} c^{3} d^{3}
$$

$$
+11 \sqrt{\left(d x^{2}+c\right)\left(a d x^{2}+a c+b\right)} \sqrt{-\frac{a d}{a c+b}} x^{8} a^{2} b c d^{4}+19 \sqrt{\left(d x^{2}+c\right)\left(a d x^{2}+a c+b\right)} \sqrt{-\frac{a d}{a c+b}} x^{6} a^{2} b c^{2} d^{3}
$$

$$
+30 \sqrt{\left(d x^{2}+c\right)\left(a d x^{2}+a c+b\right)} \sqrt{-\frac{a d}{a c+b}} x^{6} a b^{2} c d^{3}+5 \sqrt{\left(d x^{2}+c\right)\left(a d x^{2}+a c+b\right)} \sqrt{-\frac{a d}{a c+b}} x^{4} a^{2} b c^{3} d^{2}
$$

$$
\begin{aligned}
& +13 \sqrt{\left(d x^{2}+c\right)\left(a d x^{2}+a c+b\right)} \sqrt{-\frac{a d}{a c+b}} x^{4} a b^{2} c^{2} d^{2}-3 \sqrt{\left(d x^{2}+c\right)\left(a d x^{2}+a c+b\right)} \sqrt{-\frac{a d}{a c+b}} x^{2} a b^{2} c^{3} d \\
& +5 \sqrt{x^{4} a d^{2}+2 x^{2} a c d+b d x^{2}+c^{2} a+b c} \sqrt{-\frac{a d}{a c+b}} x^{8} a^{2} b c d^{4}+5 \sqrt{x^{4} a d^{2}+2 x^{2} a c d+b d x^{2}+c^{2} a+b c} \sqrt{-\frac{a d}{a c+b}} x^{6} a^{2} b c^{2} d^{3} \\
& +10 \sqrt{x^{4} a d^{2}+2 x^{2} a c d+b d x^{2}+c^{2} a+b c} \sqrt{-\frac{a d}{a c+b}} x^{6} a b^{2} c d^{3}+\sqrt{\left(d x^{2}+c\right)\left(a d x^{2}+a c+b\right)} \sqrt{-\frac{a d}{a c+b}} a^{3} c^{6} \\
& +\sqrt{\left(d x^{2}+c\right)\left(a d x^{2}+a c+b\right)} \sqrt{-\frac{a d}{a c+b}} b^{3} c^{3}+7 \sqrt{\frac{d x^{2}+c}{c}} \sqrt{\left(d x^{2}+c\right)\left(a d x^{2}+a c+b\right)} \sqrt{\frac{a d x^{2}+a c+b}{a c+b}} \text { EllipticF }\left(x \sqrt{-\frac{a d}{a c+b}},\right. \\
& \left.\sqrt{\frac{a c+b}{a c}}\right) x^{5} a^{2} b c^{2} d^{3}-16 \sqrt{\frac{d x^{2}+c}{c}} \sqrt{\left(d x^{2}+c\right)\left(a d x^{2}+a c+b\right)} \sqrt{\frac{a d x^{2}+a c+b}{a c+b}} \text { EllipticE }\left(x \sqrt{-\frac{a d}{a c+b}}, \sqrt{\frac{a c+b}{a c}}\right) x^{5} a^{2} b c^{2} d^{3} \\
& +8 \sqrt{\frac{d x^{2}+c}{c}} \sqrt{\left(d x^{2}+c\right)\left(a d x^{2}+a c+b\right)} \sqrt{\frac{a d x^{2}+a c+b}{a c+b}} \operatorname{EllipticF}\left(x \sqrt{-\frac{a d}{a c+b}}, \sqrt{\frac{a c+b}{a c}}\right) x^{5} a b^{2} c d^{3} \\
& -16 \sqrt{\frac{d x^{2}+c}{c}} \sqrt{\left(d x^{2}+c\right)\left(a d x^{2}+a c+b\right)} \sqrt{\frac{a d x^{2}+a c+b}{a c+b}} \text { EllipticE }\left(x \sqrt{-\frac{a d}{a c+b}}, \sqrt{\frac{a c+b}{a c}}\right) x^{5} a b^{2} c d^{3} \\
& +\sqrt{\left(d x^{2}+c\right)\left(a d x^{2}+a c+b\right)} \sqrt{-\frac{a d}{a c+b}} x^{6} a^{3} c^{3} d^{3}+\sqrt{\left(d x^{2}+c\right)\left(a d x^{2}+a c+b\right)} \sqrt{-\frac{a d}{a c+b}} x^{2} a^{3} c^{5} d \\
& +8 \sqrt{\left(d x^{2}+c\right)\left(a d x^{2}+a c+b\right)} \sqrt{-\frac{a d}{a c+b}} x^{4} b^{3} c d^{2}-2 \sqrt{\left(d x^{2}+c\right)\left(a d x^{2}+a c+b\right)} \sqrt{-\frac{a d}{a c+b}} x^{2} b^{3} c^{2} d \\
& +5 \sqrt{x^{4} a d^{2}+2 x^{2} a c d+b d x^{2}+c^{2} a+b c} \sqrt{-\frac{a d}{a c+b}} x^{8} a b^{2} d^{4}+\sqrt{\left(d x^{2}+c\right)\left(a d x^{2}+a c+b\right)} \sqrt{-\frac{a d}{a c+b}} x^{8} a^{3} c^{2} d^{4} \\
& \left.\left.+11 \sqrt{\left(d x^{2}+c\right)\left(a d x^{2}+a c+b\right)} \sqrt{-\frac{a d}{a c+b}} x^{8} a b^{2} d^{4}\right) \sqrt{\frac{a d x^{2}+a c+b}{d x^{2}+c}}\right) /\left(5 \sqrt{x^{4} a d^{2}+2 x^{2} a c d+b d x^{2}+c^{2} a+b c} \sqrt{-\frac{a d}{a c+b}}(a c\right. \\
& \text { +b) } \left.x^{5} c^{4}\left(a d x^{2}+a c+b\right)\right)
\end{aligned}
$$

Problem 93: Result more than twice size of optimal antiderivative.

$$
\int \frac{x^{3}}{\sqrt{a+\frac{b}{d x^{2}+c}}} d x
$$

Optimal(type 3, 132 leaves, 6 steps):

$$
\frac{b(4 a c+3 b) \operatorname{arctanh}\left(\frac{\sqrt{\frac{a d x^{2}+a c+b}{d x^{2}+c}}}{\sqrt{a}}\right)}{8 a^{5 / 2} d^{2}}-\frac{(4 a c+3 b)\left(d x^{2}+c\right) \sqrt{\frac{a d x^{2}+a c+b}{d x^{2}+c}}}{8 a^{2} d^{2}}+\frac{\left(d x^{2}+c\right)^{2} \sqrt{\frac{a d x^{2}+a c+b}{d x^{2}+c}}}{4 a d^{2}}
$$

Result(type 3, 353 leaves):

$$
\left.\left.\begin{array}{l}
\frac{1}{16 \sqrt{\left(d x^{2}+c\right)\left(a d x^{2}+a c+b\right)} a^{2} d^{2} \sqrt{a d^{2}}}\left(\sqrt { \frac { a d x ^ { 2 } + a c + b } { d x ^ { 2 } + c } } (d x ^ { 2 } + c) \left(4 a \sqrt{x^{4} a d^{2}+2 x^{2} a c d+b d x^{2}+c^{2} a+b c} x^{2} d \sqrt{a d^{2}}\right.\right. \\
+4 b \ln \left(\frac{2 a d^{2} x^{2}+2 a c d+2 \sqrt{x^{4} a d^{2}+2 x^{2} a c d+b d x^{2}+c^{2} a+b c} \sqrt{a d^{2}}+b d}{2 \sqrt{a d^{2}}}\right) a c d-4 a \sqrt{x^{4} a d^{2}+2 x^{2} a c d+b d x^{2}+c^{2} a+b c} c \sqrt{a d^{2}} \\
\\
+3 \ln \left(\frac{2 a d^{2} x^{2}+2 a c d+2 \sqrt{x^{4} a d^{2}+2 x^{2} a c d+b d x^{2}+c^{2} a+b c} \sqrt{a d^{2}}+b d}{2 \sqrt{a d^{2}}}\right) b^{2} d-6 \sqrt{x^{4} a d^{2}+2 x^{2} a c d+b d x^{2}+c^{2} a+b c} b \sqrt{a d^{2}}
\end{array}\right)\right) .
$$

Problem 94: Result more than twice size of optimal antiderivative.

$$
\int \frac{1}{x \sqrt{a+\frac{b}{d x^{2}+c}}} \mathrm{~d} x
$$

Optimal(type 3, 80 leaves, 6 steps):

Result(type 3, 312 leaves):

$$
\begin{aligned}
& -\frac{1}{2 \sqrt{\left(d x^{2}+c\right)\left(a d x^{2}+a c+b\right)}(a c+b) \sqrt{a d^{2}}}\left(\sqrt{\frac{a d x^{2}+a c+b}{d x^{2}+c}}\left(d x^{2}+c\right)\right. \\
& -\ln \left(\frac{2 a d^{2} x^{2}+2 a c d+2 \sqrt{x^{4} a d^{2}+2 x^{2} a c d+b d x^{2}+c^{2} a+b c} \sqrt{a d^{2}}+b d}{2 \sqrt{a d^{2}}}\right) a c d \\
& \quad+\sqrt{c^{2} a+b c} \ln \left(\frac{2 x^{2} a c d+b d x^{2}+2 c^{2} a+2 \sqrt{c^{2} a+b c} \sqrt{x^{4} a d^{2}+2 x^{2} a c d+b d x^{2}+c^{2} a+b c}+2 b c}{x^{2}}\right) \sqrt{a d^{2}} \\
& \left.\left.-\ln \left(\frac{2 a d^{2} x^{2}+2 a c d+2 \sqrt{x^{4} a d^{2}+2 x^{2} a c d+b d x^{2}+c^{2} a+b c} \sqrt{a d^{2}}+b d}{2 \sqrt{a d^{2}}}\right) b d\right)\right)
\end{aligned}
$$

Problem 95: Result more than twice size of optimal antiderivative.

$$
\int \frac{1}{x^{3} \sqrt{a+\frac{b}{d x^{2}+c}}} \mathrm{~d} x
$$

Optimal(type 3, 92 leaves, 5 steps):

$$
-\frac{b d \operatorname{arctanh}\left(\frac{\sqrt{c} \sqrt{\frac{a d x^{2}+a c+b}{d x^{2}+c}}}{\sqrt{a c+b}}\right)}{2(a c+b)^{3 / 2} \sqrt{c}}-\frac{\left(d x^{2}+c\right) \sqrt{\frac{a d x^{2}+a c+b}{d x^{2}+c}}}{2(a c+b) x^{2}}
$$

Result(type 3, 451 leaves):

$$
\begin{aligned}
& -\frac{1}{4 \sqrt{\left(d x^{2}+c\right)\left(a d x^{2}+a c+b\right)}(a c+b)^{2} c x^{2} \sqrt{c^{2} a+b c}}\left(\sqrt{\frac{a d x^{2}+a c+b}{d x^{2}+c}}\left(d x^{2}+c\right)(\right. \\
& \\
& -2 a d^{2} \sqrt{x^{4} a d^{2}+2 x^{2} a c d+b d x^{2}+c^{2} a+b c} x^{4} \sqrt{c^{2} a+b c} \\
& +\ln \left(\frac{2 x^{2} a c d+b d x^{2}+2 c^{2} a+2 \sqrt{c^{2} a+b c} \sqrt{x^{4} a d^{2}+2 x^{2} a c d+b d x^{2}+c^{2} a+b c}+2 b c}{x^{2}}\right) x^{2} a b c^{2} d \\
& \\
& -4 \sqrt{x^{4} a d^{2}+2 x^{2} a c d+b d x^{2}+c^{2} a+b c} a c d x^{2} \sqrt{c^{2} a+b c} \\
& \\
& +\ln \left(\frac{2 x^{2} a c d+b d x^{2}+2 c^{2} a+2 \sqrt{c^{2} a+b c} \sqrt{x^{4} a d^{2}+2 x^{2} a c d+b d x^{2}+c^{2} a+b c}+2 b c}{x^{2}}\right) x^{2} b^{2} c d \\
& \\
& \left.\left.-2 \sqrt{x^{4} a d^{2}+2 x^{2} a c d+b d x^{2}+c^{2} a+b c} b d x^{2} \sqrt{c^{2} a+b c}+2\left(x^{4} a d^{2}+2 x^{2} a c d+b d x^{2}+c^{2} a+b c\right)^{3 / 2} \sqrt{c^{2} a+b c}\right)\right)
\end{aligned}
$$

Problem 96: Result more than twice size of optimal antiderivative.

$$
\int \frac{1}{x^{5} \sqrt{a+\frac{b}{d x^{2}+c}}} \mathrm{~d} x
$$

Optimal(type 3, 157 leaves, 6 steps):

$$
\frac{b(4 a c+b) d^{2} \operatorname{arctanh}\left(\frac{\sqrt{c} \sqrt{\frac{a d x^{2}+a c+b}{d x^{2}+c}}}{\sqrt{a c+b}}\right)}{8 c^{3 / 2}(a c+b)^{5 / 2}}+\frac{(4 a c+b) d\left(d x^{2}+c\right) \sqrt{\frac{a d x^{2}+a c+b}{d x^{2}+c}}}{8 c(a c+b)^{2} x^{2}}-\frac{\left(d x^{2}+c\right)^{2} \sqrt{\frac{a d x^{2}+a c+b}{d x^{2}+c}}}{4 c(a c+b) x^{4}}
$$

Result(type 3, 921 leaves):
$\frac{1}{16 \sqrt{\left(d x^{2}+c\right)\left(a d x^{2}+a c+b\right)}(a c+b)^{3} c^{2}\left(c^{2} a+b c\right)^{3 / 2} x^{4}}\left(\sqrt{\frac{a d x^{2}+a c+b}{d x^{2}+c}}\left(d x^{2}+c\right)(\right.$

$$
\begin{aligned}
& -12 a^{2} d^{3} \sqrt{x^{4} a d^{2}+2 x^{2} a c d+b d x^{2}+c^{2} a+b c} x^{6} c\left(c^{2} a+b c\right)^{3 / 2} \\
& +4 \ln \left(\frac{2 x^{2} a c d+b d x^{2}+2 c^{2} a+2 \sqrt{c^{2} a+b c} \sqrt{x^{4} a d^{2}+2 x^{2} a c d+b d x^{2}+c^{2} a+b c}+2 b c}{x^{2}}\right) x^{4} a^{3} b c^{5} d^{2}
\end{aligned}
$$

$$
-2 a d^{3} \sqrt{x^{4} a d^{2}+2 x^{2} a c d+b d x^{2}+c^{2} a+b c} x^{6} b\left(c^{2} a+b c\right)^{3 / 2}
$$

$$
+9 \ln \left(\frac{2 x^{2} a c d+b d x^{2}+2 c^{2} a+2 \sqrt{c^{2} a+b c} \sqrt{x^{4} a d^{2}+2 x^{2} a c d+b d x^{2}+c^{2} a+b c}+2 b c}{x^{2}}\right) x^{4} a^{2} b^{2} c^{4} d^{2}
$$

$$
-20 \sqrt{x^{4} a d^{2}+2 x^{2} a c d+b d x^{2}+c^{2} a+b c} a^{2} c^{2} d^{2}\left(c^{2} a+b c\right)^{3 / 2} x^{4}
$$

$$
+6 \ln \left(\frac{2 x^{2} a c d+b d x^{2}+2 c^{2} a+2 \sqrt{c^{2} a+b c} \sqrt{x^{4} a d^{2}+2 x^{2} a c d+b d x^{2}+c^{2} a+b c}+2 b c}{x^{2}}\right) x^{4} a b^{3} c^{3} d^{2}
$$

$-12 a d^{2} \sqrt{x^{4} a d^{2}+2 x^{2} a c d+b d x^{2}+c^{2} a+b c} b c\left(c^{2} a+b c\right)^{3 / 2} x^{4}$
$+\ln \left(\frac{2 x^{2} a c d+b d x^{2}+2 c^{2} a+2 \sqrt{c^{2} a+b c} \sqrt{x^{4} a d^{2}+2 x^{2} a c d+b d x^{2}+c^{2} a+b c}+2 b c}{x^{2}}\right) x^{4} b^{4} c^{2} d^{2}$
$-2 \sqrt{x^{4} a d^{2}+2 x^{2} a c d+b d x^{2}+c^{2} a+b c} b^{2} d^{2}\left(c^{2} a+b c\right)^{3 / 2} x^{4}+12 d\left(x^{4} a d^{2}+2 x^{2} a c d+b d x^{2}+c^{2} a+b c\right)^{3 / 2} a c\left(c^{2} a+b c\right)^{3 / 2} x^{2}$
$+2 d\left(x^{4} a d^{2}+2 x^{2} a c d+b d x^{2}+c^{2} a+b c\right)^{3 / 2} b\left(c^{2} a+b c\right)^{3 / 2} x^{2}-4\left(c^{2} a+b c\right)^{3 / 2}\left(x^{4} a d^{2}+2 x^{2} a c d+b d x^{2}+c^{2} a+b c\right)^{3 / 2} a c^{2}-4\left(c^{2} a\right.$ $\left.\left.+b c)^{3 / 2}\left(x^{4} a d^{2}+2 x^{2} a c d+b d x^{2}+c^{2} a+b c\right)^{3 / 2} b c\right)\right)$

Problem 100: Result more than twice size of optimal antiderivative.

$$
\int \frac{\sqrt{\frac{a}{x^{7}}}}{\sqrt{x^{5}+1}} \mathrm{~d} x
$$

Optimal(type 2, 17 leaves, 2 steps):

$$
-\frac{2 x \sqrt{\frac{a}{x^{7}}} \sqrt{x^{5}+1}}{5}
$$

Result(type 2, 36 leaves):

$$
-\frac{2(1+x)\left(x^{4}-x^{3}+x^{2}-x+1\right) x \sqrt{\frac{a}{x^{7}}}}{5 \sqrt{x^{5}+1}}
$$

Problem 105: Result unnecessarily involves higher level functions and more than twice size of optimal antiderivative.

$$
\int \frac{\sqrt{a x}}{\sqrt{x^{3}+1}} \mathrm{~d} x
$$

Optimal(type 3, 15 leaves, 3 steps):

$$
\frac{2 \operatorname{arcsinh}\left(\frac{(a x)^{3 / 2}}{a^{3 / 2}}\right) \sqrt{a}}{3}
$$

Result(type 4, 320 leaves):

$$
\begin{aligned}
& -\left(4 \sqrt{a x} \sqrt{x^{3}+1} a(\mathrm{I} \sqrt{3}+1) \sqrt{\frac{(3+\mathrm{I} \sqrt{3}) x}{(\mathrm{I} \sqrt{3}+1)(1+x)}}(1\right. \\
& +x)^{2} \sqrt{\frac{\mathrm{I} \sqrt{3}+2 x-1}{(\mathrm{I} \sqrt{3}-1)(1+x)}} \sqrt{\frac{\mathrm{I} \sqrt{3}-2 x+1}{(\mathrm{I} \sqrt{3}+1)(1+x)}}\left(\operatorname{EllipticF}\left(\sqrt{\frac{(3+\mathrm{I} \sqrt{3}) x}{(\mathrm{I} \sqrt{3}+1)(1+x)}}, \sqrt{\frac{(-3+\mathrm{I} \sqrt{3})(\mathrm{I} \sqrt{3}+1)}{(\mathrm{I} \sqrt{3}-1)(3+\mathrm{I} \sqrt{3})}}\right)\right. \\
& \text { - EllipticPi } \left.\left.\left(\sqrt{\frac{(3+\mathrm{I} \sqrt{3}) x}{(\mathrm{I} \sqrt{3}+1)(1+x)}}, \frac{\mathrm{I} \sqrt{3}+1}{3+\mathrm{I} \sqrt{3}}, \sqrt{\frac{(-3+\mathrm{I} \sqrt{3})(\mathrm{I} \sqrt{3}+1)}{(\mathrm{I} \sqrt{3}-1)(3+\mathrm{I} \sqrt{3})}}\right)\right)\right) /\left(\sqrt{\left(x^{3}+1\right) a x}(3\right. \\
& +\mathrm{I} \sqrt{3}) \sqrt{-a x(1+x)(\mathrm{I} \sqrt{3}+2 x-1)(\mathrm{I} \sqrt{3}-2 x+1)})
\end{aligned}
$$

Problem 109: Result more than twice size of optimal antiderivative.

$$
\int \frac{x}{(\sqrt{b x+a}+\sqrt{b x+c})^{2}} \mathrm{~d} x
$$

Optimal(type 3, 137 leaves, 8 steps):
$\frac{(a+c) x^{2}}{2(a-c)^{2}}+\frac{2 b x^{3}}{3(a-c)^{2}}-\frac{2(b x+a)^{3 / 2}(b x+c)^{3 / 2}}{3 b^{2}(a-c)^{2}}-\frac{(a+c) \operatorname{arctanh}\left(\frac{\sqrt{b x+a}}{\sqrt{b x+c}}\right)}{4 b^{2}}+\frac{(a+c)(b x+a)^{3 / 2} \sqrt{b x+c}}{2 b^{2}(a-c)^{2}}$

$$
-\frac{(a+c) \sqrt{b x+a} \sqrt{b x+c}}{4 b^{2}(a-c)}
$$

Result(type 3, 430 leaves):
$\frac{x^{2} a}{2(a-c)^{2}}+\frac{x^{2} c}{2(a-c)^{2}}+\frac{2 b x^{3}}{3(a-c)^{2}}-\frac{1}{24(a-c)^{2} b^{2} \sqrt{b^{2} x^{2}+a b x+b c x+a c}}\left(\sqrt{b x+a} \sqrt{b x+c}\left(16 \operatorname{csgn}(b) x^{2} b^{2} \sqrt{b^{2} x^{2}+a b x+b c x+a c}\right.\right.$

$$
+4 \sqrt{b^{2} x^{2}+a b x+b c x+a c} \operatorname{csgn}(b) x a b+4 \sqrt{b^{2} x^{2}+a b x+b c x+a c} \operatorname{csgn}(b) x b c-6 \sqrt{b^{2} x^{2}+a b x+b c x+a c} \operatorname{csgn}(b) a^{2}
$$

$$
+4 \sqrt{b^{2} x^{2}+a b x+b c x+a c} \operatorname{csgn}(b) a c-6 \sqrt{b^{2} x^{2}+a b x+b c x+a c} \operatorname{csgn}(b) c^{2}
$$

$$
+3 \ln \left(\frac{\left(2 \sqrt{b^{2} x^{2}+a b x+b c x+a c} \operatorname{csgn}(b)+2 b x+a+c\right) \operatorname{csgn}(b)}{2}\right) a^{3}
$$

$$
-3 \ln \left(\frac{\left(2 \sqrt{b^{2} x^{2}+a b x+b c x+a c} \operatorname{csgn}(b)+2 b x+a+c\right) \operatorname{csgn}(b)}{2}\right) a^{2} c
$$

$$
-3 \ln \left(\frac{\left(2 \sqrt{b^{2} x^{2}+a b x+b c x+a c} \operatorname{csgn}(b)+2 b x+a+c\right) \operatorname{csgn}(b)}{2}\right) a c^{2}
$$

$$
\left.\left.+3 \ln \left(\frac{\left(2 \sqrt{b^{2} x^{2}+a b x+b c x+a c} \operatorname{csgn}(b)+2 b x+a+c\right) \operatorname{csgn}(b)}{2}\right) c^{3}\right) \operatorname{csgn}(b)\right)
$$

Problem 112: Result more than twice size of optimal antiderivative.

$$
\int(\sqrt{1-x}+\sqrt{1+x})^{2} d x
$$

Optimal(type 3, 17 leaves, 4 steps):

$$
2 x+\arcsin (x)+x \sqrt{-x^{2}+1}
$$

Result(type 3, 57 leaves):

$$
2 x-\sqrt{1+x}(1-x)^{3 / 2}+\sqrt{1+x} \sqrt{1-x}+\frac{\sqrt{(1-x)(1+x)} \arcsin (x)}{\sqrt{1-x} \sqrt{1+x}}
$$

Problem 115: Result more than twice size of optimal antiderivative.

Optimal(type 3, 161 leaves, 8 steps):

$$
\begin{aligned}
& \frac{a x^{2}}{(b-c)^{2}}+\frac{(b+c) x^{3}}{3(b-c)^{2}}-\frac{2(b x+a)^{3 / 2}(c x+a)^{3 / 2}}{3 b(b-c)^{2} c}-\frac{a^{3}(b+c) \operatorname{arctanh}\left(\frac{\sqrt{c} \sqrt{b x+a}}{\sqrt{b} \sqrt{c x+a}}\right)}{4 b^{5 / 2} c^{5 / 2}}+\frac{a(b+c)(b x+a)^{3 / 2} \sqrt{c x+a}}{2 b^{2}(b-c)^{2} c} \\
& \quad+\frac{a^{2}(b+c) \sqrt{b x+a} \sqrt{c x+a}}{4 b^{2}(b-c) c^{2}}
\end{aligned}
$$

Result(type 3, 516 leaves):
$\frac{x^{3} b}{3(b-c)^{2}}+\frac{x^{3} c}{3(b-c)^{2}}+\frac{a x^{2}}{(b-c)^{2}}$

$$
\begin{aligned}
& -\frac{1}{24(b-c)^{2} \sqrt{b c x^{2}+a b x+a c x+a^{2}} b^{2} c^{2} \sqrt{b c}}\left(\sqrt { b x + a } \sqrt { c x + a } \left(16 x^{2} b^{2} c^{2} \sqrt{b c} \sqrt{b c x^{2}+a b x+a c x+a^{2}}\right.\right. \\
& +3 \ln \left(\frac{2 b c x+2 \sqrt{b c x^{2}+a b x+a c x+a^{2}} \sqrt{b c}+a b+a c}{2 \sqrt{b c}}\right) a^{3} b^{3}-3 \ln \left(\frac{2 b c x+2 \sqrt{b c x^{2}+a b x+a c x+a^{2}} \sqrt{b c}+a b+a c}{2 \sqrt{b c}}\right) a^{3} b^{2} c \\
& -3 \ln \left(\frac{2 b c x+2 \sqrt{b c x^{2}+a b x+a c x+a^{2}} \sqrt{b c}+a b+a c}{2 \sqrt{b c}}\right) a^{3} b c^{2}+3 \ln \left(\frac{2 b c x+2 \sqrt{b c x^{2}+a b x+a c x+a^{2}} \sqrt{b c}+a b+a c}{2 \sqrt{b c}}\right) a^{3} c^{3}
\end{aligned}
$$

$$
+4 \sqrt{b c} \sqrt{b c x^{2}+a b x+a c x+a^{2}} x a b^{2} c+4 \sqrt{b c} \sqrt{b c x^{2}+a b x+a c x+a^{2}} x a b c^{2}-6 \sqrt{b c} \sqrt{b c x^{2}+a b x+a c x+a^{2}} a^{2} b^{2}
$$

$$
\left.\left.+4 \sqrt{b c} \sqrt{b c x^{2}+a b x+a c x+a^{2}} a^{2} b c-6 \sqrt{b c} \sqrt{b c x^{2}+a b x+a c x+a^{2}} a^{2} c^{2}\right)\right)
$$

Problem 116: Result more than twice size of optimal antiderivative.

$$
\int \frac{x}{(\sqrt{b x+a}+\sqrt{c x+a})^{2}} \mathrm{~d} x
$$

Optimal(type 3, 115 leaves, 9 steps):

$$
\frac{(b+c) x}{(b-c)^{2}}+\frac{4 a \operatorname{arctanh}\left(\frac{\sqrt{b x+a}}{\sqrt{c x+a}}\right)}{(b-c)^{2}}+\frac{2 a \ln (x)}{(b-c)^{2}}-\frac{2 a(b+c) \operatorname{arctanh}\left(\frac{\sqrt{c} \sqrt{b x+a}}{\sqrt{b} \sqrt{c x+a}}\right)}{(b-c)^{2} \sqrt{b} \sqrt{c}}-\frac{2 \sqrt{b x+a} \sqrt{c x+a}}{(b-c)^{2}}
$$

Result(type 3, 265 leaves):

$$
\begin{aligned}
& \frac{b x}{(b-c)^{2}}+\frac{c x}{(b-c)^{2}}+\frac{2 a \ln (x)}{(b-c)^{2}} \\
& \quad-\frac{1}{(b-c)^{2} \sqrt{b c x^{2}+a b x+a c x+a^{2}} \sqrt{b c}}\left(\sqrt { b x + a } \sqrt { c x + a } \left(\ln \left(\frac{2 b c x+2 \sqrt{b c x^{2}+a b x+a c x+a^{2}} \sqrt{b c}+a b+a c}{2 \sqrt{b c}}\right) \operatorname{csgn}(a) a b\right.\right.
\end{aligned}
$$

$$
\begin{aligned}
& +\ln \left(\frac{2 b c x+2 \sqrt{b c x^{2}+a b x+a c x+a^{2}} \sqrt{b c}+a b+a c}{2 \sqrt{b c}}\right) \operatorname{csgn}(a) a c+2 \sqrt{b c} \sqrt{b c x^{2}+a b x+a c x+a^{2}} \operatorname{csgn}(a) \\
& \left.\left.-2 \sqrt{b c} \ln \left(\frac{a\left(2 \sqrt{b c x^{2}+a b x+a c x+a^{2}} \operatorname{csgn}(a)+b x+c x+2 a\right)}{x}\right) a\right) \operatorname{csgn}(a)\right)
\end{aligned}
$$

Problem 117: Result more than twice size of optimal antiderivative.

$$
\int \frac{1}{x(\sqrt{b x+a}+\sqrt{c x+a})^{2}} \mathrm{~d} x
$$

Optimal(type 3, 110 leaves, 6 steps):

$$
-\frac{a}{(b-c)^{2} x^{2}}+\frac{-b-c}{(b-c)^{2} x}-\frac{\operatorname{arctanh}\left(\frac{\sqrt{b x+a}}{\sqrt{c x+a}}\right)}{2 a}+\frac{(c x+a)^{3} / 2 \sqrt{b x+a}}{a(b-c)^{2} x^{2}}+\frac{\sqrt{b x+a} \sqrt{c x+a}}{2 a(b-c) x}
$$

Result(type 3, 312 leaves):

$$
\begin{aligned}
& -\frac{b}{(b-c)^{2} x}-\frac{c}{(b-c)^{2} x}-\frac{a}{(b-c)^{2} x^{2}}+\frac{1}{4(b-c)^{2} a \sqrt{b c x^{2}+a b x+a c x+a^{2}} x^{2}}(\sqrt{b x+a} \sqrt{c x+a}(\\
& -\ln \left(\frac{a\left(2 \sqrt{b c x^{2}+a b x+a c x+a^{2}} \operatorname{csgn}(a)+b x+c x+2 a\right)}{x}\right) x^{2} b^{2}+2 \ln \left(\frac{a\left(2 \sqrt{b c x^{2}+a b x+a c x+a^{2}} \operatorname{csgn}(a)+b x+c x+2 a\right)}{x}\right) x^{2} b c \\
& \quad-\ln \left(\frac{a\left(2 \sqrt{b c x^{2}+a b x+a c x+a^{2}} \operatorname{csgn}(a)+b x+c x+2 a\right)}{x}\right) x^{2} c^{2}+2 \sqrt{b c x^{2}+a b x+a c x+a^{2}} \operatorname{csgn}(a) x b \\
& \left.\left.\quad+2 \sqrt{b c x^{2}+a b x+a c x+a^{2}} \operatorname{csgn}(a) x c+4 \operatorname{csgn}(a) a \sqrt{b c x^{2}+a b x+a c x+a^{2}}\right) \operatorname{csgn}(a)\right)
\end{aligned}
$$

Problem 118: Result more than twice size of optimal antiderivative.

$$
\int \frac{1}{x^{2}(\sqrt{b x+a}+\sqrt{c x+a})^{2}} d x
$$

Optimal(type 3, 150 leaves, 7 steps):

$$
\begin{aligned}
& -\frac{2 a}{3(b-c)^{2} x^{3}}+\frac{-b-c}{2(b-c)^{2} x^{2}}+\frac{2(b x+a)^{3 / 2}(c x+a)^{3 / 2}}{3 a^{2}(b-c)^{2} x^{3}}+\frac{(b+c) \operatorname{arctanh}\left(\frac{\sqrt{b x+a}}{\sqrt{c x+a}}\right)}{4 a^{2}}-\frac{(b+c)(c x+a)^{3 / 2} \sqrt{b x+a}}{2 a^{2}(b-c)^{2} x^{2}} \\
& \quad-\frac{(b+c) \sqrt{b x+a} \sqrt{c x+a}}{4 a^{2}(b-c) x}
\end{aligned}
$$

Result(type 3, 456 leaves):

$$
\begin{aligned}
& -\frac{b}{2 x^{2}(b-c)^{2}}-\frac{c}{2 x^{2}(b-c)^{2}}-\frac{2 a}{3(b-c)^{2} x^{3}}-\frac{1}{24(b-c)^{2} a^{2} \sqrt{b c x^{2}+a b x+a c x+a^{2}} x^{3}}(\sqrt{b x+a} \sqrt{c x+a}(\\
& -3 \ln \left(\frac{a\left(2 \sqrt{b c x^{2}+a b x+a c x+a^{2}} \operatorname{csgn}(a)+b x+c x+2 a\right)}{x}\right) x^{3} b^{3}+3 \ln \left(\frac{a\left(2 \sqrt{b c x^{2}+a b x+a c x+a^{2}} \operatorname{csgn}(a)+b x+c x+2 a\right)}{x}\right) x^{3} b^{2} c \\
& +3 \ln \left(\frac{a\left(2 \sqrt{b c x^{2}+a b x+a c x+a^{2}} \operatorname{csgn}(a)+b x+c x+2 a\right)}{x}\right) x^{3} b c^{2}-3 \ln \left(\frac{a\left(2 \sqrt{b c x^{2}+a b x+a c x+a^{2}} \operatorname{csgn}(a)+b x+c x+2 a\right)}{x}\right) x^{3} c^{3} \\
& +6 \sqrt{b c x^{2}+a b x+a c x+a^{2}} \operatorname{csgn}(a) x^{2} b^{2}-4 \sqrt{b c x^{2}+a b x+a c x+a^{2}} \operatorname{csgn}(a) x^{2} b c+6 \sqrt{b c x^{2}+a b x+a c x+a^{2}} \operatorname{csgn}(a) x^{2} c^{2} \\
& \left.\left.-4 \operatorname{csgn}(a) a \sqrt{b c x^{2}+a b x+a c x+a^{2}} x b-4 \operatorname{csgn}(a) a \sqrt{b c x^{2}+a b x+a c x+a^{2}} x c-16 \sqrt{b c x^{2}+a b x+a c x+a^{2}} a^{2} \operatorname{csgn}(a)\right) \operatorname{csgn}(a)\right)
\end{aligned}
$$

Problem 121: Result more than twice size of optimal antiderivative.

$$
\int(-\sqrt{1-x}-\sqrt{1+x})(\sqrt{1-x}+\sqrt{1+x}) d x
$$

Optimal(type 3, 20 leaves, 5 steps):

$$
-2 x-\arcsin (x)-x \sqrt{-x^{2}+1}
$$

Result(type 3, 58 leaves):

$$
-2 x+\sqrt{1+x}(1-x)^{3 / 2}-\sqrt{1+x} \sqrt{1-x}-\frac{\sqrt{(1-x)(1+x)} \arcsin (x)}{\sqrt{1-x} \sqrt{1+x}}
$$

Problem 122: Result more than twice size of optimal antiderivative.

$$
\int \frac{-\sqrt{-1+x}+\sqrt{1+x}}{\sqrt{-1+x}+\sqrt{1+x}} d x
$$

Optimal(type 3, 23 leaves, 9 steps):

$$
\frac{x^{2}}{2}+\frac{\operatorname{arccosh}(x)}{2}-\frac{x \sqrt{-1+x} \sqrt{1+x}}{2}
$$

Result(type 3, 61 leaves):

$$
\frac{x^{2}}{2}-\frac{\sqrt{-1+x}(1+x)^{3 / 2}}{2}+\frac{\sqrt{-1+x} \sqrt{1+x}}{2}+\frac{\sqrt{(-1+x)(1+x)} \ln \left(x+\sqrt{x^{2}-1}\right)}{2 \sqrt{1+x} \sqrt{-1+x}}
$$

Problem 123: Unable to integrate problem.

$$
\int\left(d+e x+f \sqrt{a+\frac{e^{2} x^{2}}{f^{2}}}\right)^{n} \mathrm{~d} x
$$

Optimal(type 5, 113 leaves, 4 steps):

$$
\frac{\left(d+e x+f \sqrt{a+\frac{e^{2} x^{2}}{f^{2}}}\right)^{1+n}}{2 e(1+n)}+\frac{a f^{2} \operatorname{hypergeom}\left([2,1+n],[n+2], \frac{d+e x+f \sqrt{a+\frac{e^{2} x^{2}}{f^{2}}}}{d}\right)\left(d+e x+f \sqrt{a+\frac{e^{2} x^{2}}{f^{2}}}\right)^{1+n}}{2 d^{2} e(1+n)}
$$

Result(type 8, 25 leaves):

$$
\int\left(d+e x+f \sqrt{a+\frac{e^{2} x^{2}}{f^{2}}}\right)^{n} \mathrm{~d} x
$$

Problem 124: Unable to integrate problem.

$$
\int\left(d+e x+f \sqrt{a+\frac{e^{2} x^{2}}{f^{2}}}\right)^{5 / 2} \mathrm{~d} x
$$

Optimal(type 3, 191 leaves, 6 steps):

$$
+\frac{2 a d f^{2} \sqrt{d+e x+f \sqrt{a+\frac{e^{2} x^{2}}{f^{2}}}}}{e}-\frac{a d^{2} f^{2} \sqrt{d+e x+f \sqrt{a+\frac{e^{2} x^{2}}{f^{2}}}}}{2 e\left(f \sqrt{a+\frac{e^{2} x^{2}}{f^{2}}}+e x\right)}
$$

Result(type 8, 25 leaves):

$$
\int\left(d+e x+f \sqrt{a+\frac{e^{2} x^{2}}{f^{2}}}\right)^{5 / 2} \mathrm{~d} x
$$

Problem 125: Unable to integrate problem.

$$
\int \sqrt{d+e x+f \sqrt{a+\frac{e^{2} x^{2}}{f^{2}}}} d x
$$

Optimal(type 3, 123 leaves, 6 steps):

$$
-\frac{a f^{2} \operatorname{arctanh}\left(\frac{\sqrt{d+e x+f \sqrt{a+\frac{e^{2} x^{2}}{f^{2}}}}}{\sqrt{d}}\right)}{2 e \sqrt{d}}+\frac{\left(d+e x+f \sqrt{a+\frac{e^{2} x^{2}}{f^{2}}}\right)^{3 / 2}}{3 e}-\frac{a f^{2} \sqrt{d+e x+f \sqrt{a+\frac{e^{2} x^{2}}{f^{2}}}}}{2 e\left(f \sqrt{a+\frac{e^{2} x^{2}}{f^{2}}}+e x\right)}
$$

Result(type 8, 25 leaves):

$$
\int \sqrt{d+e x+f \sqrt{a+\frac{e^{2} x^{2}}{f^{2}}}} d x
$$

Problem 126: Unable to integrate problem.

$$
\int \frac{1}{\sqrt{d+e x+f \sqrt{a+\frac{e^{2} x^{2}}{f^{2}}}}} d x
$$

Optimal(type 3, 125 leaves, 5 steps):

$$
\frac{a f^{2} \operatorname{arctanh}\left(\frac{\sqrt{d+e x+f \sqrt{a+\frac{e^{2} x^{2}}{f^{2}}}}}{\sqrt{d}}\right)}{2 d^{3 / 2} e}+\frac{\sqrt{d+e x+f \sqrt{a+\frac{e^{2} x^{2}}{f^{2}}}}}{e}-\frac{a f^{2} \sqrt{d+e x+f \sqrt{a+\frac{e^{2} x^{2}}{f^{2}}}}}{2 d e\left(f \sqrt{a+\frac{e^{2} x^{2}}{f^{2}}+e x}\right)}
$$

Result(type 8, 25 leaves):

$$
\int \frac{1}{\sqrt{d+e x+f \sqrt{a+\frac{e^{2} x^{2}}{f^{2}}}}} d x
$$

Problem 127: Unable to integrate problem.

$$
\int \sqrt{a x+b \sqrt{c+\frac{a^{2} x^{2}}{b^{2}}}} \mathrm{~d} x
$$

Optimal(type 2, 59 leaves, 3 steps):

$$
\frac{\left(a x+b \sqrt{c+\frac{a^{2} x^{2}}{b^{2}}}\right)^{3 / 2}}{3 a}-\frac{b^{2} c}{a \sqrt{a x+b \sqrt{c+\frac{a^{2} x^{2}}{b^{2}}}}}
$$

Result(type 8, 24 leaves):

$$
\int \sqrt{a x+b \sqrt{c+\frac{a^{2} x^{2}}{b^{2}}}} d x
$$

Problem 128: Result unnecessarily involves higher level functions.

$$
\int \sqrt{1+\sqrt{-x^{2}+1}} \mathrm{~d} x
$$

Optimal(type 2, 35 leaves, 1 step):

$$
-\frac{2 x^{3}}{3\left(1+\sqrt{-x^{2}+1}\right)^{3 / 2}}+\frac{2 x}{\sqrt{1+\sqrt{-x^{2}+1}}}
$$

Result(type 3, 59 leaves):
$\frac{\frac{\mathrm{I}}{8}\left(\frac{32 \mathrm{I} \sqrt{\pi} \sqrt{2} x^{3} \cos \left(\frac{3 \arcsin (x)}{2}\right)}{3}-\frac{8 \mathrm{I} \sqrt{\pi} \sqrt{2}\left(-\frac{4}{3} x^{4}+\frac{2}{3} x^{2}+\frac{2}{3}\right) \sin \left(\frac{3 \arcsin (x)}{2}\right)}{\sqrt{-x^{2}+1}}\right)}{\sqrt{\pi}}$

Problem 129: Unable to integrate problem.

$$
\int \sqrt{a+b \sqrt{\frac{a^{2}}{b^{2}}+c x^{2}}} d x
$$

Optimal(type 2, 56 leaves, 1 step):

$$
\frac{2 b^{2} c x^{3}}{3\left(a+b \sqrt{\frac{a^{2}}{b^{2}}+c x^{2}}\right)^{3 / 2}}+\frac{2 a x}{\sqrt{a+b \sqrt{\frac{a^{2}}{b^{2}}+c x^{2}}}}
$$

Result(type 8, 23 leaves):

$$
\int \sqrt{a+b \sqrt{\frac{a^{2}}{b^{2}}+c x^{2}}} d x
$$

Problem 130: Unable to integrate problem.

$$
\int\left(d+e x+f \sqrt{a+b x+\frac{e^{2} x^{2}}{f^{2}}}\right)^{n} \mathrm{~d} x
$$

Optimal(type 5, 158 leaves, 4 steps):

$$
\begin{aligned}
& \frac{\left(d+e x+f \sqrt{a+b x+\frac{e^{2} x^{2}}{f^{2}}}\right)^{1+n}}{2 e(1+n)} \\
& \quad+\frac{\left.f^{2}\left(-b^{2} f^{2}+4 a e^{2}\right) \text { hypergeom }\left([2,1+n],[n+2], \frac{2 e\left(d+e x+f \sqrt{a+b x+\frac{e^{2} x^{2}}{f^{2}}}\right)}{2 e\left(-b f^{2}+2 d e\right)^{2}(1+n)}\right)\left(d+e x+f \sqrt{a+b x+\frac{e^{2} x^{2}}{f^{2}}}\right)\right)^{1+n}}{} \quad \begin{array}{l}
-b f^{2}+2 d e
\end{array}
\end{aligned}
$$

Result(type 8, 28 leaves):

$$
\int\left(d+e x+f \sqrt{a+b x+\frac{e^{2} x^{2}}{f^{2}}}\right)^{n} \mathrm{~d} x
$$

Problem 132: Result more than twice size of optimal antiderivative.

$$
\int \frac{1}{d+e x+f \sqrt{a+b x+\frac{e^{2} x^{2}}{f^{2}}}} \mathrm{~d} x
$$

Optimal(type 3, 205 leaves, 3 steps):

$$
\begin{aligned}
& \frac{2\left(a e f^{2}-b d f^{2}+d^{2} e\right) \ln \left(d+e x+f \sqrt{a+b x+\frac{e^{2} x^{2}}{f^{2}}}\right)}{\left(-b f^{2}+2 d e\right)^{2}}-\frac{f^{2}\left(-b^{2} f^{2}+4 a e^{2}\right) \ln \left(b f^{2}+2 e\left(e x+f \sqrt{a+\frac{x\left(b f^{2}+e^{2} x\right)}{f^{2}}}\right)\right)}{2 e\left(-b f^{2}+2 d e\right)^{2}} \\
& -\frac{f^{2}\left(-b^{2} f^{2}+4 a e^{2}\right)}{2 e\left(-b f^{2}+2 d e\right)\left(b f^{2}+2 e\left(e x+f \sqrt{a+\frac{x\left(b f^{2}+e^{2} x\right)}{f^{2}}}\right)\right)}
\end{aligned}
$$

Result(type ?, 4917 leaves): Display of huge result suppressed!
Problem 133: Unable to integrate problem.

$$
\int \frac{1}{\left(d+e x+f \sqrt{a+b x+\frac{e^{2} x^{2}}{f^{2}}}\right)^{5 / 2}} \mathrm{~d} x
$$

Optimal(type 3, 303 leaves, 6 steps):
$\frac{5 f^{2}\left(-b^{2} f^{2}+4 a e^{2}\right) \operatorname{arctanh}\left(\frac{\sqrt{2} \sqrt{e} \sqrt{d+e x+f \sqrt{a+b x+\frac{e^{2} x^{2}}{f^{2}}}}}{\sqrt{-b f^{2}+2 d e}}\right) \sqrt{2} \sqrt{e}}{\left(-b f^{2}+2 d e\right)^{7 / 2}}-\frac{4\left(a e f^{2}-b d f^{2}+d^{2} e\right)}{3\left(-b f^{2}+2 d e\right)^{2}\left(d+e x+f \sqrt{a+b x+\frac{e^{2} x^{2}}{f^{2}}}\right)^{3 / 2}}$

$$
-\frac{4 f^{2}\left(-b^{2} f^{2}+4 a e^{2}\right)}{\left(-b f^{2}+2 d e\right)^{3} \sqrt{d+e x+f \sqrt{a+b x+\frac{e^{2} x^{2}}{f^{2}}}}}-\frac{2 e f^{2}\left(-b^{2} f^{2}+4 a e^{2}\right) \sqrt{d+e x+f \sqrt{a+b x+\frac{e^{2} x^{2}}{f^{2}}}}}{\left(-b f^{2}+2 d e\right)^{3}\left(b f^{2}+2 e\left(e x+f \sqrt{a+\frac{x\left(b f^{2}+e^{2} x\right)}{f^{2}}}\right)\right)}
$$

Result(type 8, 28 leaves):

$$
\int \frac{1}{\left(d+e x+f \sqrt{a+b x+\frac{e^{2} x^{2}}{f^{2}}}\right)^{5 / 2}} \mathrm{~d} x
$$

Problem 134: Unable to integrate problem.

$$
\int\left(x^{2}+a\right)\left(x-\sqrt{x^{2}+a}\right)^{n} \mathrm{~d} x
$$

Optimal(type 3, 100 leaves, 3 steps):

$$
-\frac{a^{3}\left(x-\sqrt{x^{2}+a}\right)^{-3+n}}{8(3-n)}-\frac{3 a^{2}\left(x-\sqrt{x^{2}+a}\right)^{-1+n}}{8(1-n)}+\frac{3 a\left(x-\sqrt{x^{2}+a}\right)^{1+n}}{8(1+n)}+\frac{\left(x-\sqrt{x^{2}+a}\right)^{3+n}}{8(3+n)}
$$

Result(type 8, 21 leaves):

$$
\int\left(x^{2}+a\right)\left(x-\sqrt{x^{2}+a}\right)^{n} \mathrm{~d} x
$$

Problem 135: Unable to integrate problem.

$$
\int \frac{\left(x-\sqrt{x^{2}+a}\right)^{n}}{x^{2}+a} d x
$$

Optimal(type 5, 57 leaves, 2 steps):

$$
\frac{2 \text { hypergeom }\left(\left[1, \frac{1}{2}+\frac{n}{2}\right],\left[\frac{3}{2}+\frac{n}{2}\right],-\frac{\left(x-\sqrt{x^{2}+a}\right)^{2}}{a}\right)\left(x-\sqrt{x^{2}+a}\right)^{1+n}}{a(1+n)}
$$

Result(type 8, 23 leaves):

$$
\int \frac{\left(x-\sqrt{x^{2}+a}\right)^{n}}{x^{2}+a} \mathrm{~d} x
$$

Problem 136: Unable to integrate problem.

$$
\int \frac{\left(x-\sqrt{x^{2}+a}\right)^{n}}{\left(x^{2}+a\right)^{2}} \mathrm{~d} x
$$

Optimal(type 5, 57 leaves, 2 steps):

$$
\frac{8 \text { hypergeom }\left(\left[3, \frac{3}{2}+\frac{n}{2}\right],\left[\frac{5}{2}+\frac{n}{2}\right],-\frac{\left(x-\sqrt{x^{2}+a}\right)^{2}}{a}\right)\left(x-\sqrt{x^{2}+a}\right)^{3+n}}{a^{3}(3+n)}
$$

Result(type 8, 23 leaves):

$$
\int \frac{\left(x-\sqrt{x^{2}+a}\right)^{n}}{\left(x^{2}+a\right)^{2}} d x
$$

Problem 137: Unable to integrate problem.

$$
\int \frac{\left(x-\sqrt{x^{2}+a}\right)^{n}}{\left(x^{2}+a\right)^{3 / 2}} d x
$$

Optimal(type 5, 57 leaves, 2 steps):

$$
-\frac{4 \text { hypergeom }\left(\left[2, \frac{n}{2}+1\right],\left[2+\frac{n}{2}\right],-\frac{\left(x-\sqrt{x^{2}+a}\right)^{2}}{a}\right)\left(x-\sqrt{x^{2}+a}\right)^{n+2}}{a^{2}(n+2)}
$$

Result(type 8, 23 leaves):

$$
\int \frac{\left(x-\sqrt{x^{2}+a}\right)^{n}}{\left(x^{2}+a\right)^{3 / 2}} \mathrm{~d} x
$$

Problem 138: Unable to integrate problem.

$$
\int\left(d+e x+f \sqrt{a+\frac{2 d e x}{f^{2}}+\frac{e^{2} x^{2}}{f^{2}}}\right)^{n} \mathrm{~d} x
$$

Optimal(type 3, 99 leaves, 4 steps):

$$
\frac{\left(-a f^{2}+d^{2}\right)\left(d+e x+f \sqrt{a+\frac{2 d e x}{f^{2}}+\frac{e^{2} x^{2}}{f^{2}}}\right)^{-1+n}}{2 e(1-n)}+\frac{\left(d+e x+f \sqrt{a+\frac{2 d e x}{f^{2}}+\frac{e^{2} x^{2}}{f^{2}}}\right)^{1+n}}{2 e(1+n)}
$$

Result(type 8, 33 leaves):

$$
\int\left(d+e x+f \sqrt{a+\frac{2 d e x}{f^{2}}+\frac{e^{2} x^{2}}{f^{2}}}\right)^{n} \mathrm{~d} x
$$

Problem 139: Unable to integrate problem.

$$
\int \frac{\left(d+e x+f \sqrt{a+\frac{2 d e x}{f^{2}}+\frac{e^{2} x^{2}}{f^{2}}}\right)^{n}}{\sqrt{a+\frac{2 d e x}{f^{2}}+\frac{e^{2} x^{2}}{f^{2}}}} \mathrm{~d} x
$$

Optimal(type 3, 39 leaves, 3 steps):

$$
\frac{f\left(d+e x+f \sqrt{a+\frac{2 d e x}{f^{2}}+\frac{e^{2} x^{2}}{f^{2}}}\right)^{n}}{e n}
$$

Result(type 8, 56 leaves):

$$
\int \frac{\left(d+e x+f \sqrt{a+\frac{2 d e x}{f^{2}}+\frac{e^{2} x^{2}}{f^{2}}}\right)^{n}}{\sqrt{a+\frac{2 d e x}{f^{2}}+\frac{e^{2} x^{2}}{f^{2}}}} \mathrm{~d} x
$$

Problem 140: Result more than twice size of optimal antiderivative.

$$
\int \frac{1}{(b x+a) \sqrt{d x^{2}+c} \sqrt{f x^{2}+e}} \mathrm{~d} x
$$

Optimal(type 4, 164 leaves, 7 steps):

$$
-\frac{b \operatorname{arctanh}\left(\frac{\sqrt{a^{2} f+e b^{2}} \sqrt{d x^{2}+c}}{\sqrt{a^{2} d+b^{2} c} \sqrt{f x^{2}+e}}\right)}{\sqrt{a^{2} d+b^{2} c} \sqrt{a^{2} f+e b^{2}}}+\frac{\operatorname{EllipticPi}\left(\frac{x \sqrt{d}}{\sqrt{-c}},-\frac{b^{2} c}{a^{2} d}, \sqrt{\frac{c f}{d e}}\right) \sqrt{-c} \sqrt{1+\frac{d x^{2}}{c}} \sqrt{1+\frac{f x^{2}}{e}}}{a \sqrt{d} \sqrt{d x^{2}+c} \sqrt{f x^{2}+e}}
$$

Result(type 4, 352 leaves):
$\frac{1}{2 a \sqrt{-\frac{d}{c}} \sqrt{\frac{a^{4} d f+a^{2} b^{2} c f+a^{2} b^{2} d e+e c b^{4}}{b^{4}}} b\left(d f x^{4}+c f x^{2}+e x^{2} d+e c\right)}\left(\left(2 \sqrt{\frac{d x^{2}+c}{c}} \sqrt{\frac{f x^{2}+e}{e}} \sqrt{\frac{a^{4} d f+a^{2} b^{2} c f+a^{2} b^{2} d e+e c b^{4}}{b^{4}}}\right.\right.$
EllipticPi $\left(\sqrt{-\frac{d}{c}} x,-\frac{b^{2} c}{a^{2} d}, \frac{\sqrt{-\frac{f}{e}}}{\sqrt{-\frac{d}{c}}}\right) b$
$\left.\left.-\operatorname{arctanh}\left(\frac{2 a^{2} d f x^{2}+b^{2} c f x^{2}+b^{2} d e x^{2}+c f a^{2}+a^{2} d e+2 b^{2} e c}{2 b^{2} \sqrt{\frac{a^{4} d f+a^{2} b^{2} c f+a^{2} b^{2} d e+e c b^{4}}{b^{4}}} \sqrt{d f x^{4}+c f x^{2}+e x^{2} d+e c}}\right) \sqrt{d f x^{4}+c f x^{2}+e x^{2} d+e c} \sqrt{-\frac{d}{c}} a\right) \sqrt{f x^{2}+e} \sqrt{d x^{2}+c}\right)$

Problem 141: Result more than twice size of optimal antiderivative.

$$
\int \frac{e-2 f(-1+n) x^{n}}{e^{2}+4 d f x^{2}+4 e f x^{n}+4 f^{2} x^{2 n}} \mathrm{~d} x
$$

Optimal(type 3, 28 leaves, 2 steps):

$$
\frac{\arctan \left(\frac{2 x \sqrt{d} \sqrt{f}}{e+2 f x^{n}}\right)}{2 \sqrt{d} \sqrt{f}}
$$

Result(type 3, 77 leaves):

$$
-\frac{\ln \left(x^{n}+\frac{2 d f x+e \sqrt{-d f}}{2 \sqrt{-d f} f}\right)}{4 \sqrt{-d f}}+\frac{\ln \left(x^{n}+\frac{-2 d f x+e \sqrt{-d f}}{2 \sqrt{-d f} f}\right)}{4 \sqrt{-d f}}
$$

Problem 143: Result is not expressed in closed-form.

$$
\int \frac{x\left(-2 f x^{3}+2 e\right)}{4 f^{2} x^{6}+4 d f x^{4}+4 e f x^{3}+e^{2}} \mathrm{~d} x
$$

Optimal(type 3, 30 leaves, 2 steps):

$$
\frac{\arctan \left(\frac{2 x^{2} \sqrt{d} \sqrt{f}}{2 f x^{3}+e}\right)}{2 \sqrt{d} \sqrt{f}}
$$

Result(type 7, 73 leaves):
$\left.-\frac{\left.\sum_{R=\operatorname{RootOf}\left(4 f^{2}\right.}^{Z^{6}+4 d f} Z^{4}+4 e f Z^{3}+e^{2}\right)}{} \frac{\left(R_{-} R^{4} f-_{-} R e\right) \ln \left(x-_{-} R\right)}{6 f_{-} R^{5}+4 d_{-} R^{3}+3 e_{-} R^{2}}\right)$

Problem 144: Result more than twice size of optimal antiderivative.

$$
\int \frac{x^{m}\left(e(1+m)+2 f(-2+m) x^{3}\right)}{e^{2}+4 e f x^{3}+4 f^{2} x^{6}+4 d f x^{2}+2 m} d x
$$

Optimal(type 3, 32 leaves, 2 steps):

$$
\frac{\arctan \left(\frac{2 x^{1+m} \sqrt{d} \sqrt{f}}{2 f x^{3}+e}\right)}{2 \sqrt{d} \sqrt{f}}
$$

Result(type 3, 77 leaves):

$$
-\frac{\ln \left(x^{m}+\frac{\left(2 f x^{3}+e\right) \sqrt{-d f}}{2 d f x}\right)}{4 \sqrt{-d f}}+\frac{\ln \left(x^{m}-\frac{\left(2 f x^{3}+e\right) \sqrt{-d f}}{2 d f x}\right)}{4 \sqrt{-d f}}
$$

Problem 145: Result more than twice size of optimal antiderivative.

$$
\int \frac{x^{m}\left(e(1+m)+2 f(-2+m) x^{3}\right)}{e^{2}+4 e f x^{3}+4 f^{2} x^{6}-4 d f x^{2}+2 m} d x
$$

Optimal(type 3, 32 leaves, 2 steps):

$$
\frac{\operatorname{arctanh}\left(\frac{2 x^{1+m} \sqrt{d} \sqrt{f}}{2 f x^{3}+e}\right)}{2 \sqrt{d} \sqrt{f}}
$$

Result(type 3, 73 leaves):

$$
\frac{\ln \left(x^{m}+\frac{\left(2 f x^{3}+e\right) \sqrt{d f}}{2 d f x}\right)}{4 \sqrt{d f}}-\frac{\ln \left(x^{m}-\frac{\left(2 f x^{3}+e\right) \sqrt{d f}}{2 d f x}\right)}{4 \sqrt{d f}}
$$

Problem 146: Result more than twice size of optimal antiderivative.

$$
\int \frac{1}{x\left(a c+b c x^{2}+d \sqrt{b x^{2}+a}\right)} d x
$$

Optimal(type 3, 80 leaves, 7 steps):

$$
\frac{c \ln (x)}{c^{2} a-d^{2}}-\frac{c \ln \left(d+c \sqrt{b x^{2}+a}\right)}{c^{2} a-d^{2}}+\frac{d \operatorname{arctanh}\left(\frac{\sqrt{b x^{2}+a}}{\sqrt{a}}\right)}{\left(c^{2} a-d^{2}\right) \sqrt{a}}
$$

Result(type ?, 2174 leaves): Display of huge result suppressed!
Problem 147: Result is not expressed in closed-form.

$$
\int \frac{x^{5}}{a c+b c x^{3}+d \sqrt{b x^{3}+a}} \mathrm{~d} x
$$

Optimal(type 3, 63 leaves, 4 steps):

$$
\frac{x^{3}}{3 b c}-\frac{2\left(c^{2} a-d^{2}\right) \ln \left(d+c \sqrt{b x^{3}+a}\right)}{3 b^{2} c^{3}}-\frac{2 d \sqrt{b x^{3}+a}}{3 c^{2} b^{2}}
$$

Result(type 7, 942 leaves):
$-\frac{2 d \sqrt{b x^{3}+a}}{3 c^{2} b^{2}}+\frac{1}{3 d b^{4}}\left(\mathrm{I} \sqrt{2} \sum_{-\alpha=\operatorname{RootOf}\left(b c^{2} Z_{-}^{3}+c^{2} a-d^{2}\right)} \frac{1}{\sqrt{b x^{3}+a}}\left(-a b^{2}\right)^{1 /}\right.$
$\sqrt[3]{\frac{\frac{\mathrm{I}}{2} b\left(2 x+\frac{-\mathrm{I} \sqrt{3}\left(-a b^{2}\right)^{1 / 3}+\left(-a b^{2}\right)^{1 / 3}}{b}\right)}{\left(-a b^{2}\right)^{1 / 3}} \sqrt{\frac{b\left(x-\frac{\left(-a b^{2}\right)^{1 / 3}}{b}\right)}{-3\left(-a b^{2}\right)^{1 / 3}+\mathrm{I} \sqrt{3}\left(-a b^{2}\right)^{1 / 3}}} \sqrt{\frac{-\frac{\mathrm{I}}{2} b\left(2 x+\frac{\left(-a b^{2}\right)^{1 / 3}+\mathrm{I} \sqrt{3}\left(-a b^{2}\right)^{1 / 3}}{b}\right)}{\left(-a b^{2}\right)^{1 / 3}}}(\mathrm{I}}$
$\left.\left(-a b^{2}\right)^{1 / 3} \sqrt{3} _\alpha b-\mathrm{I}\left(-a b^{2}\right)^{2 / 3} \sqrt{3}+2 _\alpha^{2} b^{2}-\left(-a b^{2}\right)^{1 / 3}{ }_{-} \alpha b-\left(-a b^{2}\right)^{2 / 3}\right)$

EllipticPi $\left(\frac{\sqrt{3} \sqrt{\frac{\mathrm{I}\left(x+\frac{\left(-a b^{2}\right)^{1 / 3}}{2 b}-\frac{\mathrm{I} \sqrt{3}\left(-a b^{2}\right)^{1 / 3}}{2 b}\right) \sqrt{3} b}{\left(-a b^{2}\right)^{1 / 3}}} 3}{3}\right.$,

$$
\left.\left(-a b^{2}\right)^{1 / 3} \sqrt{3} _\alpha b-\mathrm{I}\left(-a b^{2}\right)^{2 / 3} \sqrt{3}+2 _\alpha^{2} b^{2}-\left(-a b^{2}\right)^{1 / 3}{ }_{-} \alpha b-\left(-a b^{2}\right)^{2 / 3}\right)
$$

$$
\text { EllipticPi }\left(\frac{\sqrt{3} \sqrt{\frac{\mathrm{I}\left(x+\frac{\left(-a b^{2}\right)^{1 / 3}}{2 b}-\frac{\mathrm{I} \sqrt{3}\left(-a b^{2}\right)^{1 / 3}}{2 b}\right) \sqrt{3} b}{\left(-a b^{2}\right)^{1 / 3}}} 3}{3},\right.
$$

$$
\left.\left.\left.-\frac{c^{2}\left(2 \mathrm{I} \sqrt{3}\left(-a b^{2}\right)^{1 / 3}-\alpha^{2} b-\mathrm{I} \sqrt{3}\left(-a b^{2}\right)^{2 / 3}-\alpha+\mathrm{I} \sqrt{3} a b-3\left(-a b^{2}\right)^{2 / 3}-\alpha-3 a b\right)}{2 b d^{2}}, \sqrt{\frac{\mathrm{I} \sqrt{3}\left(-a b^{2}\right)^{1 / 3}}{b\left(-\frac{3\left(-a b^{2}\right)^{1 / 3}}{2 b}+\frac{\mathrm{I} \sqrt{3}\left(-a b^{2}\right)^{1 / 3}}{2 b}\right)}}\right) \|\right) \mid \sqrt{b}\right)
$$

$$
-\frac{a \ln \left(x^{3} b c^{2}+c^{2} a-d^{2}\right)}{3 c b^{2}}+\frac{x^{3}}{3 b c}+\frac{d^{2} \ln \left(x^{3} b c^{2}+c^{2} a-d^{2}\right)}{3 b^{2} c^{3}}
$$

$$
\begin{aligned}
& \left.\left.-\frac{c^{2}\left(2 \mathrm{I} \sqrt{3}\left(-a b^{2}\right)^{1 / 3}-\alpha^{2} b-\mathrm{I} \sqrt{3}\left(-a b^{2}\right)^{2 / 3}-\alpha+\mathrm{I} \sqrt{3} a b-3\left(-a b^{2}\right)^{2 / 3}-\alpha-3 a b\right)}{2 b d^{2}}, \sqrt{\frac{\mathrm{I} \sqrt{3}\left(-a b^{2}\right)^{1 / 3}}{b\left(-\frac{3\left(-a b^{2}\right)^{1 / 3}}{2 b}+\frac{\mathrm{I} \sqrt{3}\left(-a b^{2}\right)^{1 / 3}}{2 b}\right)}}\right) \sqrt{ }\right) \\
& a)-\frac{1}{3 b^{4} c^{2}}\left(\mathrm{I} d \sqrt{2} \sum_{-\alpha=\operatorname{RootOf}\left(b c^{2} Z^{2}+c^{2} a-d^{2}\right)} \frac{1}{\sqrt{b x^{3}+a}}\left(-a b^{2}\right)^{1 /}\right. \\
& \sqrt[3]{\frac{\frac{\mathrm{I}}{2} b\left(2 x+\frac{-\mathrm{I} \sqrt{3}\left(-a b^{2}\right)^{1 / 3}+\left(-a b^{2}\right)^{1 / 3}}{b}\right)}{\left(-a b^{2}\right)^{1 / 3}} \sqrt{\frac{b\left(x-\frac{\left(-a b^{2}\right)^{1 / 3}}{b}\right)}{-3\left(-a b^{2}\right)^{1 / 3}+\mathrm{I} \sqrt{3}\left(-a b^{2}\right)^{1 / 3}}} \sqrt{\frac{-\frac{\mathrm{I}}{2} b\left(2 x+\frac{\left(-a b^{2}\right)^{1 / 3}+\mathrm{I} \sqrt{3}\left(-a b^{2}\right)^{1 / 3}}{b}\right)}{\left(-a b^{2}\right)^{1 / 3}}}(\mathrm{I}}
\end{aligned}
$$

Problem 148: Result is not expressed in closed-form.

$$
\int \frac{1}{x^{4}\left(a c+b c x^{3}+d \sqrt{b x^{3}+a}\right)} \mathrm{d} x
$$

Optimal(type 3, 138 leaves, 8 steps):

$$
-\frac{b d\left(3 c^{2} a-d^{2}\right) \operatorname{arctanh}\left(\frac{\sqrt{b x^{3}+a}}{\sqrt{a}}\right)}{3 a^{3 / 2}\left(c^{2} a-d^{2}\right)^{2}}-\frac{b c^{3} \ln (x)}{\left(c^{2} a-d^{2}\right)^{2}}+\frac{2 b c^{3} \ln \left(d+c \sqrt{b x^{3}+a}\right)}{3\left(c^{2} a-d^{2}\right)^{2}}+\frac{-a c+d \sqrt{b x^{3}+a}}{3 a\left(c^{2} a-d^{2}\right) x^{3}}
$$

Result(type 7, 862 leaves):

$$
\left.\left(-a b^{2}\right)^{1 / 3} \sqrt{3} _\alpha b-\mathrm{I}\left(-a b^{2}\right)^{2 / 3} \sqrt{3}+2 _\alpha^{2} b^{2}-\left(-a b^{2}\right)^{1 / 3} _\alpha b-\left(-a b^{2}\right)^{2 / 3}\right)
$$

$$
\text { EllipticPi } \frac{\sqrt{3} \sqrt{\frac{\mathrm{I}\left(x+\frac{\left(-a b^{2}\right)^{1 / 3}}{2 b}-\frac{\mathrm{I} \sqrt{3}\left(-a b^{2}\right)^{1 / 3}}{2 b}\right) \sqrt{3} b}{\left(-a b^{2}\right)^{1 / 3}}} 33}{3}
$$

$$
\begin{aligned}
& -\frac{c}{3\left(c^{2} a-d^{2}\right) x^{3}}-\frac{2 b c^{3} \ln (x)}{\left(c^{2} a-d^{2}\right)^{2}}+\frac{c b \ln (x) d^{2}}{a\left(c^{2} a-d^{2}\right)^{2}}+\frac{a c^{5} b \ln \left(x^{3} b c^{2}+c^{2} a-d^{2}\right)}{3\left(c^{2} a-d^{2}\right)^{2} d^{2}}+\frac{b c \ln (x)}{a\left(c^{2} a-d^{2}\right)}-\frac{b c^{3} \ln \left(x^{3} b c^{2}+c^{2} a-d^{2}\right)}{3\left(c^{2} a-d^{2}\right) d^{2}}+\frac{d \sqrt{b x^{3}+a}}{3 a\left(c^{2} a-d^{2}\right) x^{3}}
\end{aligned}
$$

$$
\begin{aligned}
& 3 \sqrt{\frac{\frac{\mathrm{I}}{2} b\left(2 x+\frac{-\mathrm{I} \sqrt{3}\left(-a b^{2}\right)^{1 / 3}+\left(-a b^{2}\right)^{1 / 3}}{b}\right)}{\left(-a b^{2}\right)^{1 / 3}} \sqrt{\frac{b\left(x-\frac{\left(-a b^{2}\right)^{1 / 3}}{b}\right)}{-3\left(-a b^{2}\right)^{1 / 3}+\mathrm{I} \sqrt{3}\left(-a b^{2}\right)^{1 / 3}}} \sqrt{\frac{-\frac{\mathrm{I}}{2} b\left(2 x+\frac{\left(-a b^{2}\right)^{1 / 3}+\mathrm{I} \sqrt{3}\left(-a b^{2}\right)^{1 / 3}}{b}\right)}{\left(-a b^{2}\right)^{1 / 3}}}(\mathrm{I}}
\end{aligned}
$$

$$
\begin{aligned}
& \left.-\frac{c^{2}\left(2 \mathrm{I} \sqrt{3}\left(-a b^{2}\right)^{1 / 3}-\alpha^{2} b-\mathrm{I} \sqrt{3}\left(-a b^{2}\right)^{2 / 3}-\alpha+\mathrm{I} \sqrt{3} a b-3\left(-a b^{2}\right)^{2 / 3}-\alpha-3 a b\right)}{2 b d^{2}}, \sqrt{\left.\frac{\mathrm{I} \sqrt{3}\left(-a b^{2}\right)^{1 / 3}}{b\left(-\frac{3\left(-a b^{2}\right)^{1 / 3}}{2 b}+\frac{\mathrm{I} \sqrt{3}\left(-a b^{2}\right)^{1 / 3}}{2 b}\right)}\right)}\right) \mid \\
& +\frac{2 b \sqrt{b x^{3}+a}}{3 a^{2} d}+\frac{4 d b \sqrt{b x^{3}+a} c^{2}}{3 a\left(c^{2} a-d^{2}\right)^{2}}-\frac{2 b \sqrt{b x^{3}+a} d^{3}}{3 a^{2}\left(c^{2} a-d^{2}\right)^{2}}-\frac{4 d b \operatorname{arctanh}\left(\frac{\sqrt{b x^{3}+a}}{\sqrt{a}}\right) c^{2}}{3 \sqrt{a}\left(c^{2} a-d^{2}\right)^{2}}+\frac{2 b \operatorname{arctanh}\left(\frac{\sqrt{b x^{3}+a}}{\sqrt{a}}\right) d^{3}}{3 a^{3 / 2}\left(c^{2} a-d^{2}\right)^{2}}
\end{aligned}
$$

Problem 149: Result is not expressed in closed-form.

$$
\int \frac{x^{3}}{a c+b c x^{3}+d \sqrt{b x^{3}+a}} \mathrm{~d} x
$$

Optimal(type 6, 251 leaves, 10 steps):
$\frac{x}{b c}-\frac{\left(c^{2} a-d^{2}\right)^{1 / 3} \ln \left(\left(c^{2} a-d^{2}\right)^{1 / 3}+b^{1 / 3} c^{2 / 3} x\right)}{3 b^{4 / 3} c^{5 / 3}}+\frac{\left(c^{2} a-d^{2}\right)^{1 / 3} \ln \left(\left(c^{2} a-d^{2}\right)^{2 / 3}-b^{1 / 3} c^{2 / 3}\left(c^{2} a-d^{2}\right)^{1 / 3} x+b^{2 / 3} c^{4 / 3} x^{2}\right)}{6 b^{4 / 3} c^{5 / 3}}$

$$
+\frac{\left(c^{2} a-d^{2}\right)^{1 / 3} \arctan \left(\frac{\left(1-\frac{2 b^{1 / 3} c^{2 / 3} x}{\left(c^{2} a-d^{2}\right)^{1 / 3}}\right) \sqrt{3}}{3}\right) \sqrt{3}}{3 b^{4 / 3} c^{5 / 3}}-\frac{d x^{4} \operatorname{AppellF} 1\left(\frac{4}{3}, \frac{1}{2}, 1, \frac{7}{3},-\frac{b x^{3}}{a},-\frac{b c^{2} x^{3}}{c^{2} a-d^{2}}\right) \sqrt{1+\frac{b x^{3}}{a}}}{4\left(c^{2} a-d^{2}\right) \sqrt{b x^{3}+a}}
$$

Result(type 7, 1543 leaves):
$\frac{1}{3 b^{2} c^{2} \sqrt{b x^{3}+a}}\left(2 \mathrm{I} d \sqrt{3}\left(-a b^{2}\right)^{1 /}\right.$

$$
\sqrt[3]{\frac{\mathrm{I}\left(x+\frac{\left(-a b^{2}\right)^{1 / 3}}{2 b}-\frac{\mathrm{I} \sqrt{3}\left(-a b^{2}\right)^{1 / 3}}{2 b}\right) \sqrt{3} b}{\left(-a b^{2}\right)^{1 / 3}} \sqrt{\frac{x-\frac{\left(-a b^{2}\right)^{1 / 3}}{b}}{\frac{-\frac{3\left(-a b^{2}\right)^{1 / 3}}{2 b}+\frac{\mathrm{I} \sqrt{3}\left(-a b^{2}\right)^{1 / 3}}{2 b}}{2 b}}} \text { (} \sqrt{\frac{1}{2 b}}}
$$

$$
\begin{aligned}
& \sqrt{\frac{-\mathrm{I}\left(x+\frac{\left(-a b^{2}\right)^{1 / 3}}{2 b}+\frac{\mathrm{I} \sqrt{3}\left(-a b^{2}\right)^{1 / 3}}{2 b}\right) \sqrt{3} b}{\left(-a b^{2}\right)^{1 / 3}}} \text { EllipticF } \sqrt{\sqrt{3} \sqrt{\frac{\mathrm{I}\left(x+\frac{\left(-a b^{2}\right)^{1 / 3}}{2 b}-\frac{\mathrm{I} \sqrt{3}\left(-a b^{2}\right)^{1 / 3}}{2 b}\right) \sqrt{3} b}{\left(-a b^{2}\right)^{1 / 3}}} 3}, \\
& \left.\sqrt{\frac{\mathrm{I} \sqrt{3}\left(-a b^{2}\right)^{1 / 3}}{b\left(-\frac{3\left(-a b^{2}\right)^{1 / 3}}{2 b}+\frac{\mathrm{I} \sqrt{3}\left(-a b^{2}\right)^{1 / 3}}{2 b}\right)}}\right)+\frac{1}{3 d b^{4}}\left(\mathrm{I} \sqrt{2} \sum_{-\alpha=\operatorname{RootOf}\left(_Z^{3} b c^{2}+c^{2} a-d^{2}\right) _\alpha^{2} \sqrt{b x^{3}+a}}\left(-a b^{2}\right)^{1 /}\right. \\
& \sqrt[3]{\frac{\frac{\mathrm{I}}{2} b\left(2 x+\frac{-\mathrm{I} \sqrt{3}\left(-a b^{2}\right)^{1 / 3}+\left(-a b^{2}\right)^{1 / 3}}{b}\right)}{\left(-a b^{2}\right)^{1 / 3}} \sqrt{\frac{b\left(x-\frac{\left(-a b^{2}\right)^{1 / 3}}{b}\right)}{-3\left(-a b^{2}\right)^{1 / 3}+\mathrm{I} \sqrt{3}\left(-a b^{2}\right)^{1 / 3}}} \sqrt{\frac{-\frac{\mathrm{I}}{2} b\left(2 x+\frac{\left(-a b^{2}\right)^{1 / 3}+\mathrm{I} \sqrt{3}\left(-a b^{2}\right)^{1 / 3}}{b}\right)}{\left(-a b^{2}\right)^{1 / 3}}}(\mathrm{I}} \\
& \left.\left(-a b^{2}\right)^{1 / 3} \sqrt{3} _\alpha b-\mathrm{I}\left(-a b^{2}\right)^{2 / 3} \sqrt{3}+2 _\alpha^{2} b^{2}-\left(-a b^{2}\right)^{1 / 3}{ }_{_} \alpha b-\left(-a b^{2}\right)^{2 / 3}\right) \\
& \text { EllipticPi }\left(\frac{\sqrt{3} \sqrt{\frac{\mathrm{I}\left(x+\frac{\left(-a b^{2}\right)^{1 / 3}}{2 b}-\frac{\mathrm{I} \sqrt{3}\left(-a b^{2}\right)^{1 / 3}}{2 b}\right) \sqrt{3} b}{\left(-a b^{2}\right)^{1 / 3}}} 3}{3},\right. \\
& \left.-\frac{c^{2}\left(2 \mathrm{I} \sqrt{3}\left(-a b^{2}\right)^{1 / 3}-\alpha^{2} b-\mathrm{I} \sqrt{3}\left(-a b^{2}\right)^{2 / 3}-\alpha+\mathrm{I} \sqrt{3} a b-3\left(-a b^{2}\right)^{2 / 3}-\alpha-3 a b\right)}{2 b d^{2}}, \sqrt{\frac{\mathrm{I} \sqrt{3}\left(-a b^{2}\right)^{1 / 3}}{b\left(-\frac{3\left(-a b^{2}\right)^{1 / 3}}{2 b}+\frac{\mathrm{I} \sqrt{3}\left(-a b^{2}\right)^{1 / 3}}{2 b}\right)}} \sqrt{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& a)-\frac{1}{3 b^{4} c^{2}}\left(\mathrm { I } d \sqrt { 2 } \left(\sum_{-\alpha=\operatorname{RootOf}\left(Z^{3} b c^{2}+c^{2} a-d^{2}\right)}^{\sum_{-\alpha^{2} \sqrt{b x^{3}+a}}\left(-a b^{2}\right)^{1 /}, ~}\right.\right. \\
& \sqrt[3]{\frac{\frac{\mathrm{I}}{2} b\left(2 x+\frac{-\mathrm{I} \sqrt{3}\left(-a b^{2}\right)^{1 / 3}+\left(-a b^{2}\right)^{1 / 3}}{b}\right)}{\left(-a b^{2}\right)^{1 / 3}} \sqrt{\frac{b\left(x-\frac{\left(-a b^{2}\right)^{1 / 3}}{b}\right)}{-3\left(-a b^{2}\right)^{1 / 3}+\mathrm{I} \sqrt{3}\left(-a b^{2}\right)^{1 / 3}}} \sqrt{\frac{-\frac{\mathrm{I}}{2} b\left(2 x+\frac{\left(-a b^{2}\right)^{1 / 3}+\mathrm{I} \sqrt{3}\left(-a b^{2}\right)^{1 / 3}}{b}\right)}{\left(-a b^{2}\right)^{1 / 3}}}(\mathrm{I}} \\
& \left.\left(-a b^{2}\right)^{1 / 3} \sqrt{3} _\alpha b-\mathrm{I}\left(-a b^{2}\right)^{2 / 3} \sqrt{3}+2 _\alpha^{2} b^{2}-\left(-a b^{2}\right)^{1 / 3} _^{1} \alpha b-\left(-a b^{2}\right)^{2 / 3}\right) \\
& \text { EllipticPi }\left(\frac{\sqrt{3} \sqrt{\frac{\mathrm{I}\left(x+\frac{\left(-a b^{2}\right)^{1 / 3}}{2 b}-\frac{\mathrm{I} \sqrt{3}\left(-a b^{2}\right)^{1 / 3}}{2 b}\right) \sqrt{3} b}{\left(-a b^{2}\right)^{1 / 3}}} \frac{3}{},}{}\right. \\
& \left.\left.-\frac{c^{2}\left(2 \mathrm{I} \sqrt{3}\left(-a b^{2}\right)^{1 / 3}-\alpha^{2} b-\mathrm{I} \sqrt{3}\left(-a b^{2}\right)^{2 / 3}-\alpha+\mathrm{I} \sqrt{3} a b-3\left(-a b^{2}\right)^{2 / 3} _^{2} \alpha-3 a b\right)}{2 b d^{2}}, \sqrt{\frac{\mathrm{I} \sqrt{3}\left(-a b^{2}\right)^{1 / 3}}{b\left(-\frac{3\left(-a b^{2}\right)^{1 / 3}}{2 b}+\frac{\mathrm{I} \sqrt{3}\left(-a b^{2}\right)^{1 / 3}}{2 b}\right)}} \sqrt{ }\right) \sqrt{2}\right) \\
& -\frac{a \ln \left(x+\left(\frac{c^{2} a-d^{2}}{b c^{2}}\right)^{1 / 3}\right)}{3 c b^{2}\left(\frac{c^{2} a-d^{2}}{b c^{2}}\right)^{2 / 3}}+\frac{a \ln \left(x^{2}-x\left(\frac{c^{2} a-d^{2}}{b c^{2}}\right)^{1 / 3}+\left(\frac{c^{2} a-d^{2}}{b c^{2}}\right)^{2 / 3}\right)}{6 c b^{2}\left(\frac{c^{2} a-d^{2}}{b c^{2}}\right)^{2 / 3}}-\frac{a \sqrt{3} \arctan \left(\frac{\sqrt{3}\left(\frac{2 x}{\left(\frac{c^{2} a-d^{2}}{b c^{2}}\right)^{1 / 3}-1}\right.}{3}\right)}{3 c b^{2}\left(\frac{c^{2} a-d^{2}}{b c^{2}}\right)^{2 / 3}}+\frac{x}{b c}
\end{aligned}
$$

$$
+\frac{d^{2} \ln \left(x+\left(\frac{c^{2} a-d^{2}}{b c^{2}}\right)^{1 / 3}\right)}{3 b^{2} c^{3}\left(\frac{c^{2} a-d^{2}}{b c^{2}}\right)^{2 / 3}}-\frac{d^{2} \ln \left(x^{2}-x\left(\frac{c^{2} a-d^{2}}{b c^{2}}\right)^{1 / 3}+\left(\frac{c^{2} a-d^{2}}{b c^{2}}\right)^{2 / 3}\right)}{6 b^{2} c^{3}\left(\frac{c^{2} a-d^{2}}{b c^{2}}\right)^{2 / 3}}+\frac{d^{2} \sqrt{3} \arctan \left(\frac{\sqrt{3}\left(\frac{2 x}{\left(\frac{c^{2} a-d^{2}}{b c^{2}}\right)^{1 / 3}-1}\right)}{3 b^{2} c^{3}\left(\frac{c^{2} a-d^{2}}{b c^{2}}\right)^{2 / 3}}\right)}{3}
$$

Problem 150: Result is not expressed in closed-form.

$$
\int \frac{x}{a c+b c x^{3}+d \sqrt{b x^{3}+a}} \mathrm{~d} x
$$

Optimal(type 6, 243 leaves, 9 steps):

$$
\begin{aligned}
& -\frac{\ln \left(\left(c^{2} a-d^{2}\right)^{1 / 3}+b^{1 / 3} c^{2} / 3 x\right)}{3 b^{2 / 3} c^{1 / 3}\left(c^{2} a-d^{2}\right)^{1 / 3}}+\frac{\ln \left(\left(c^{2} a-d^{2}\right)^{2 / 3}-b^{1 / 3} c^{2 / 3}\left(c^{2} a-d^{2}\right)^{1 / 3} x+b^{2 / 3} c^{4 / 3} x^{2}\right)}{6 b^{2 / 3} c^{1 / 3}\left(c^{2} a-d^{2}\right)^{1 / 3}}-\frac{\arctan \left(\frac{\left(1-\frac{2 b^{1 / 3} c^{2 / 3} x}{\left(c^{2} a-d^{2}\right)^{1 / 3}}\right) \sqrt{3}}{3}\right) \sqrt{3}}{3 b^{2 / 3} c^{1 / 3}\left(c^{2} a-d^{2}\right)^{1 / 3}} \\
& \quad-\frac{d x^{2} \text { AppellFI }\left(\frac{2}{3}, \frac{1}{2}, 1, \frac{5}{3},-\frac{b x^{3}}{a},-\frac{b c^{2} x^{3}}{c^{2} a-d^{2}}\right) \sqrt{1+\frac{b x^{3}}{a}}}{2\left(c^{2} a-d^{2}\right) \sqrt{b x^{3}+a}}
\end{aligned}
$$

Result(type 7, 618 leaves):
$-\frac{1}{3 d b^{3}}\left(\mathrm{I} \sqrt{2} \sum_{-\alpha=\operatorname{RootOf}\left(Z^{3} b c^{2}+c^{2} a-d^{2}\right)} \frac{1}{\alpha \sqrt{b x^{3}+a}}\left(\left(-a b^{2}\right)^{1 /}\right.\right.$
$\sqrt[3]{\frac{\frac{\mathrm{I}}{2} b\left(2 x+\frac{-\mathrm{I} \sqrt{3}\left(-a b^{2}\right)^{1 / 3}+\left(-a b^{2}\right)^{1 / 3}}{b}\right)}{\left(-a b^{2}\right)^{1 / 3}} \sqrt{\frac{b\left(x-\frac{\left(-a b^{2}\right)^{1 / 3}}{b}\right)}{-3\left(-a b^{2}\right)^{1 / 3}+\mathrm{I} \sqrt{3}\left(-a b^{2}\right)^{1 / 3}}} \sqrt{\frac{-\frac{\mathrm{I}}{2} b\left(2 x+\frac{\left(-a b^{2}\right)^{1 / 3}+\mathrm{I} \sqrt{3}\left(-a b^{2}\right)^{1 / 3}}{b}\right)}{\left(-a b^{2}\right)^{1 / 3}}}(\mathrm{I}}$
$\left.\left(-a b^{2}\right)^{1 / 3} \sqrt{3} _\alpha b-\mathrm{I}\left(-a b^{2}\right)^{2 / 3} \sqrt{3}+2 _\alpha^{2} b^{2}-\left(-a b^{2}\right)^{1 / 3}{ }_{-} \alpha b-\left(-a b^{2}\right)^{2 / 3}\right)$

EllipticPi $\left(\frac{\sqrt{3} \sqrt{\frac{\mathrm{I}\left(x+\frac{\left(-a b^{2}\right)^{1 / 3}}{2 b}-\frac{\mathrm{I} \sqrt{3}\left(-a b^{2}\right)^{1 / 3}}{2 b}\right) \sqrt{3} b}{\left(-a b^{2}\right)^{1 / 3}}} 3}{3}\right.$,

$$
\left.\left.\left.\begin{array}{l}
\left.-\frac{c^{2}\left(2 \mathrm{I} \sqrt{3}\left(-a b^{2}\right)^{1 / 3}-a^{2} b-\mathrm{I} \sqrt{3}\left(-a b^{2}\right)^{2 / 3}-\alpha+\mathrm{I} \sqrt{3} a b-3\left(-a b^{2}\right)^{2 / 3}-\alpha-3 a b\right)}{2 b d^{2}}, \sqrt{\left.\frac{\mathrm{I} \sqrt{3}\left(-a b^{2}\right)^{1 / 3}}{b\left(-\frac{3\left(-a b^{2}\right)^{1 / 3}}{2 b}+\frac{\mathrm{I} \sqrt{3}\left(-a b^{2}\right)^{1 / 3}}{2 b}\right)}\right)}\right) \\
\left.-\frac{\ln \left(x+\left(\frac{c^{2} a-d^{2}}{b c^{2}}\right)^{1 / 3}\right)}{3 b c\left(\frac{c^{2} a-d^{2}}{b c^{2}}\right)^{1 / 3}}+\frac{\ln \left(x^{2}-x\left(\frac{c^{2} a-d^{2}}{b c^{2}}\right)^{1 / 3}+\left(\frac{c^{2} a-d^{2}}{b c^{2}}\right)^{2 / 3}\right)}{6 b c\left(\frac{c^{2} a-d^{2}}{b c^{2}}\right)^{1 / 3}}+\frac{\sqrt{3} \arctan \left(\frac{\sqrt{3}}{\left(\frac{c^{2} a-d^{2}}{b c^{2}}\right)^{1 / 3}-1}\right)}{3}\right)
\end{array}\right)\right]\right)
$$

Problem 151: Result is not expressed in closed-form.

$$
\int \frac{1}{x^{2}\left(a c+b c x^{3}+d \sqrt{b x^{3}+a}\right)} \mathrm{d} x
$$

Optimal(type 6, 261 leaves, 10 steps):

$$
\begin{aligned}
&-\frac{c}{\left(c^{2} a-d^{2}\right) x}\left.+\frac{b^{1 / 3} c^{5 / 3} \ln \left(\left(c^{2} a-d^{2}\right)^{1 / 3}+b^{1 / 3} c^{2 / 3} x\right)}{3\left(c^{2} a-d^{2}\right)^{4 / 3}}-\frac{b^{1 / 3} c^{5 / 3} \ln \left(\left(c^{2} a-d^{2}\right)^{2 / 3}-b^{1 / 3} c^{2 / 3}\left(c^{2} a-d^{2}\right)^{1 / 3} x+b^{2 / 3} c^{4 / 3} x^{2}\right)}{6\left(c^{2} a-d^{2}\right)^{4 / 3}}\right) \sqrt{3} \\
&+\frac{b^{1 / 3} c^{5 / 3} \arctan \left(\frac{\left(1-\frac{2 b^{1 / 3} c^{2 / 3} x}{\left(c^{2} a-d^{2}\right)^{1 / 3}}\right) \sqrt{3}}{3}\right)}{3\left(c^{2} a-d^{2}\right)^{4 / 3}}+\frac{d \operatorname{AppellF1}\left(-\frac{1}{3}, \frac{1}{2}, 1, \frac{2}{3},-\frac{b x^{3}}{a},-\frac{b c^{2} x^{3}}{c^{2} a-d^{2}}\right) \sqrt{1+\frac{b x^{3}}{a}}}{\left(c^{2} a-d^{2}\right) x \sqrt{b x^{3}+a}}
\end{aligned}
$$

Result(type ?, 3559 leaves): Display of huge result suppressed!
Problem 152: Result is not expressed in closed-form.

$$
\int \frac{1}{x^{3}\left(a c+b c x^{3}+d \sqrt{b x^{3}+a}\right)} \mathrm{d} x
$$

Optimal(type 6, 262 leaves, 10 steps):

$$
-\frac{c}{2\left(c^{2} a-d^{2}\right) x^{2}}-\frac{b^{2 / 3} c^{7} / 3 \ln \left(\left(c^{2} a-d^{2}\right)^{1 / 3}+b^{1 / 3} c^{2 / 3} x\right)}{3\left(c^{2} a-d^{2}\right)^{5 / 3}}+\frac{b^{2 / 3} c^{7 / 3} \ln \left(\left(c^{2} a-d^{2}\right)^{2 / 3}-b^{1 / 3} c^{2 / 3}\left(c^{2} a-d^{2}\right)^{1 / 3} x+b^{2 / 3} c^{4 / 3} x^{2}\right)}{6\left(c^{2} a-d^{2}\right)^{5 / 3}}
$$

$$
+\frac{b^{2 / 3} c^{7 / 3} \arctan \left(\frac{\left(1-\frac{2 b^{1 / 3} c^{2 / 3} x}{\left(c^{2} a-d^{2}\right)^{1 / 3}}\right) \sqrt{3}}{3}\right) \sqrt{3}}{3\left(c^{2} a-d^{2}\right)^{5 / 3}}+\frac{\text { dAppellFI }\left(-\frac{2}{3}, \frac{1}{2}, 1, \frac{1}{3},-\frac{b x^{3}}{a},-\frac{b c^{2} x^{3}}{c^{2} a-d^{2}}\right) \sqrt{1+\frac{b x^{3}}{a}}}{2\left(c^{2} a-d^{2}\right) x^{2} \sqrt{b x^{3}+a}}
$$

Result(type 7, 1788 leaves):

$$
\sqrt[3]{\frac{\mathrm{I}\left(x+\frac{\left(-a b^{2}\right)^{1 / 3}}{2 b}-\frac{\mathrm{I} \sqrt{3}\left(-a b^{2}\right)^{1 / 3}}{2 b}\right) \sqrt{3} b}{\left(-a b^{2}\right)^{1 / 3}} \sqrt{\frac{x-\frac{\left(-a b^{2}\right)^{1 / 3}}{b}}{\frac{3\left(-a b^{2}\right)^{1 / 3}}{2 b}+\frac{\mathrm{I} \sqrt{3}\left(-a b^{2}\right)^{1 / 3}}{2 b}}}}
$$

$$
\sqrt{\frac{-\mathrm{I}\left(x+\frac{\left(-a b^{2}\right)^{1 / 3}}{2 b}+\frac{\mathrm{I} \sqrt{3}\left(-a b^{2}\right)^{1 / 3}}{2 b}\right) \sqrt{3} b}{\left(-a b^{2}\right)^{1 / 3}}} \text { EllipticF } \sqrt{\frac{\sqrt{3} \sqrt{\frac{\mathrm{I}\left(x+\frac{\left(-a b^{2}\right)^{1 / 3}}{2 b}-\frac{\mathrm{I} \sqrt{3}\left(-a b^{2}\right)^{1 / 3}}{2 b}\right) \sqrt{3} b}{\left(-a b^{2}\right)^{1 / 3}}} 3}{3},}
$$

$$
\begin{aligned}
& \frac{c \ln \left(x+\left(\frac{c^{2} a-d^{2}}{b c^{2}}\right)^{1 / 3}\right)}{3 d^{2}\left(\frac{c^{2} a-d^{2}}{b c^{2}}\right)^{2 / 3}}-\frac{c \ln \left(x^{2}-x\left(\frac{c^{2} a-d^{2}}{b c^{2}}\right)^{1 / 3}+\left(\frac{c^{2} a-d^{2}}{b c^{2}}\right)^{2 / 3}\right)}{6 d^{2}\left(\frac{c^{2} a-d^{2}}{b c^{2}}\right)^{2 / 3}}+\frac{c \sqrt{3} \arctan \left(\frac{\sqrt{3}\left(\frac{2 x}{\left(\frac{c^{2} a-d^{2}}{b c^{2}}\right)^{1 / 3}-1}\right.}{3}\right)}{3 d^{2}\left(\frac{c^{2} a-d^{2}}{b c^{2}}\right)^{2 / 3}}-\frac{c}{2\left(c^{2} a-d^{2}\right) x^{2}} \\
& -\frac{a c^{3} \ln \left(x+\left(\frac{c^{2} a-d^{2}}{b c^{2}}\right)^{1 / 3}\right)}{3 d^{2}\left(c^{2} a-d^{2}\right)\left(\frac{c^{2} a-d^{2}}{b c^{2}}\right)^{2 / 3}}+\frac{a c^{3} \ln \left(x^{2}-x\left(\frac{c^{2} a-d^{2}}{b c^{2}}\right)^{1 / 3}+\left(\frac{c^{2} a-d^{2}}{b c^{2}}\right)^{2 / 3}\right)}{6 d^{2}\left(c^{2} a-d^{2}\right)\left(\frac{c^{2} a-d^{2}}{b c^{2}}\right)^{2 / 3}}-\frac{a c^{3} \sqrt{3} \arctan \left(\frac{\left(\sqrt{3}\left(\frac{c^{2} a-d^{2}}{b c^{2}}\right)^{1 / 3}-1\right.}{3}\right)}{3 d^{2}\left(c^{2} a-d^{2}\right)\left(\frac{c^{2} a-d^{2}}{b c^{2}}\right)^{2 / 3}} \\
& +\frac{d \sqrt{b x^{3}+a}}{2 a\left(c^{2} a-d^{2}\right) x^{2}}+\frac{1}{2 a\left(c^{2} a-d^{2}\right) \sqrt{b x^{3}+a}}\left(\mathrm{I} d \sqrt{3}\left(-a b^{2}\right)^{1 /}\right.
\end{aligned}
$$

$\left.\left.\sqrt{\frac{\mathrm{I} \sqrt{3}\left(-a b^{2}\right)^{1 / 3}}{b\left(-\frac{3\left(-a b^{2}\right)^{1 / 3}}{2 b}+\frac{\mathrm{I} \sqrt{3}\left(-a b^{2}\right)^{1 / 3}}{2 b}\right)}}\right)\right)+\frac{1}{3 a d \sqrt{b x^{3}+a}}\left(2 \mathrm{I} \sqrt{3}\left(-a b^{2}\right)^{1 /}\right.$ $\sqrt[3]{\frac{\mathrm{I}\left(x+\frac{\left(-a b^{2}\right)^{1 / 3}}{2 b}-\frac{\mathrm{I} \sqrt{3}\left(-a b^{2}\right)^{1 / 3}}{2 b}\right) \sqrt{3} b}{\left(-a b^{2}\right)^{1 / 3}}} \sqrt{\frac{x-\frac{\left(-a b^{2}\right)^{1 / 3}}{b}}{\frac{-\frac{3\left(-a b^{2}\right)^{1 / 3}}{2 b}+\frac{\mathrm{I} \sqrt{3}\left(-a b^{2}\right)^{1 / 3}}{2 b}}{2 b}}}$ $\sqrt{\frac{-\mathrm{I}\left(x+\frac{\left(-a b^{2}\right)^{1 / 3}}{2 b}+\frac{\mathrm{I} \sqrt{3}\left(-a b^{2}\right)^{1 / 3}}{2 b}\right) \sqrt{3} b}{\left(-a b^{2}\right)^{1 / 3}}}$ EllipticF $\frac{\sqrt{3} \sqrt{\frac{\mathrm{I}\left(x+\frac{\left(-a b^{2}\right)^{1 / 3}}{2 b}-\frac{\mathrm{I} \sqrt{3}\left(-a b^{2}\right)^{1 / 3}}{2 b}\right) \sqrt{3} b}{\left(-a b^{2}\right)^{1 / 3}}} 3}{3}$, $\left.\sqrt{\frac{\mathrm{I} \sqrt{3}\left(-a b^{2}\right)^{1 / 3}}{b\left(-\frac{3\left(-a b^{2}\right)^{1 / 3}}{2 b}+\frac{\mathrm{I} \sqrt{3}\left(-a b^{2}\right)^{1 / 3}}{2 b}\right)}}\right)\left(-\frac{1}{3 d\left(c^{2} a-d^{2}\right) \sqrt{b x^{3}+a}}\left(2 \mathrm{I} c^{2} \sqrt{3}\left(-a b^{2}\right)^{1 /}\right.\right.$
$\sqrt[3]{\frac{\mathrm{I}\left(x+\frac{\left(-a b^{2}\right)^{1 / 3}}{2 b}-\frac{\mathrm{I} \sqrt{3}\left(-a b^{2}\right)^{1 / 3}}{2 b}\right) \sqrt{3} b}{\left(-a b^{2}\right)^{1 / 3}} \sqrt{\frac{x-\frac{\left(-a b^{2}\right)^{1 / 3}}{b}}{-\frac{3\left(-a b^{2}\right)^{1 / 3}}{2 b}+\frac{\mathrm{I} \sqrt{3}\left(-a b^{2}\right)^{1 / 3}}{2 b}}}}$
$\sqrt{\frac{-\mathrm{I}\left(x+\frac{\left(-a b^{2}\right)^{1 / 3}}{2 b}+\frac{\mathrm{I} \sqrt{3}\left(-a b^{2}\right)^{1 / 3}}{2 b}\right) \sqrt{3} b}{\left(-a b^{2}\right)^{1 / 3}}}$ EllipticF $\frac{\sqrt{3} \sqrt{\frac{\mathrm{I}\left(x+\frac{\left(-a b^{2}\right)^{1 / 3}}{2 b}-\frac{\mathrm{I} \sqrt{3}\left(-a b^{2}\right)^{1 / 3}}{2 b}\right) \sqrt{3} b}{\left(-a b^{2}\right)^{1 / 3}}} 3}{3}$,

$$
\begin{aligned}
& \left.\sqrt{\frac{\mathrm{I} \sqrt{3}\left(-a b^{2}\right)^{1 / 3}}{b\left(-\frac{3\left(-a b^{2}\right)^{1 / 3}}{2 b}+\frac{\mathrm{I} \sqrt{3}\left(-a b^{2}\right)^{1 / 3}}{2 b}\right)}}\right) \\
& \sqrt{2})+\frac{1}{3 b^{2} d\left(c^{2} a-d^{2}\right)}\left(\mathrm{I} c^{2} \sqrt{2} \sum_{-\alpha=\operatorname{RootOf}\left(Z^{3} b c^{2}+c^{2} a-d^{2}\right)} \frac{1}{-\alpha^{2} \sqrt{b x^{3}+a}}(\right. \\
& \left.-a b^{2}\right)^{1 /}
\end{aligned}
$$

$$
3 \sqrt{\frac{\frac{\mathrm{I}}{2} b\left(2 x+\frac{-\mathrm{I} \sqrt{3}\left(-a b^{2}\right)^{1 / 3}+\left(-a b^{2}\right)^{1 / 3}}{b}\right)}{\left(-a b^{2}\right)^{1 / 3}} \sqrt{\frac{b\left(x-\frac{\left(-a b^{2}\right)^{1 / 3}}{b}\right)}{-3\left(-a b^{2}\right)^{1 / 3}+\mathrm{I} \sqrt{3}\left(-a b^{2}\right)^{1 / 3}}} \sqrt{\frac{-\frac{\mathrm{I}}{2} b\left(2 x+\frac{\left(-a b^{2}\right)^{1 / 3}+\mathrm{I} \sqrt{3}\left(-a b^{2}\right)^{1 / 3}}{b}\right)}{\left(-a b^{2}\right)^{1 / 3}}}(\mathrm{I}}
$$

$$
\left.\left(-a b^{2}\right)^{1 / 3} \sqrt{3} _\alpha b-\mathrm{I}\left(-a b^{2}\right)^{2 / 3} \sqrt{3}+2 _\alpha^{2} b^{2}-\left(-a b^{2}\right)^{1 / 3}{ }_{-} \alpha b-\left(-a b^{2}\right)^{2 / 3}\right)
$$

$$
\text { EllipticPi } \frac{\sqrt{3} \sqrt{\frac{\mathrm{I}\left(x+\frac{\left(-a b^{2}\right)^{1 / 3}}{2 b}-\frac{\mathrm{I} \sqrt{3}\left(-a b^{2}\right)^{1 / 3}}{2 b}\right) \sqrt{3} b}{\left(-a b^{2}\right)^{1 / 3}}} 33}{3}
$$

$$
\left.\left.-\frac{c^{2}\left(2 \mathrm{I} \sqrt{3}\left(-a b^{2}\right)^{1 / 3}-\alpha^{2} b-\mathrm{I} \sqrt{3}\left(-a b^{2}\right)^{2 / 3}-\alpha+\mathrm{I} \sqrt{3} a b-3\left(-a b^{2}\right)^{2 / 3} _^{2 b-3 a b)}\right.}{2 b d^{2}}, \sqrt{\frac{\mathrm{I} \sqrt{3}\left(-a b^{2}\right)^{1 / 3}}{b\left(-\frac{3\left(-a b^{2}\right)^{1 / 3}}{2 b}+\frac{\mathrm{I} \sqrt{3}\left(-a b^{2}\right)^{1 / 3}}{2 b}\right)}}\right) \mid \sqrt{ }\right)
$$

$$
\int \frac{1}{x^{1 / 4}+x^{1 / 3}} \mathrm{~d} x
$$

Optimal(type 3, 49 leaves, 4 steps):

$$
-12 x^{1 / 12}+6 x^{1 / 6}-4 x^{1 / 4}+3 x^{1 / 3}-\frac{12 x^{5 / 12}}{5}-\frac{12 x^{7 / 12}}{7}+\frac{3 x^{2 / 3}}{2}+12 \ln \left(1+x^{1 / 12}\right)+2 \sqrt{x}
$$

Result(type 3, 172 leaves):

$$
\begin{aligned}
& 3 x^{1 / 3}+2 \sqrt{x}-4 x^{1 / 4}-2 \ln \left(x^{1 / 4}-1\right)-\ln \left(x^{2 / 3}+x^{1 / 3}+1\right)-\frac{12 x^{7 / 12}}{7}+6 x^{1 / 6}-12 x^{1 / 12}-\frac{12 x^{5 / 12}}{5}+2 \ln \left(x^{1 / 3}-1\right)+\ln (-1+\sqrt{x})-\ln (1 \\
& \quad+\sqrt{x})-2 \ln \left(x^{1 / 6}+1\right)+2 \ln \left(x^{1 / 6}-1\right)+\ln \left(x^{1 / 3}-x^{1 / 6}+1\right)+4 \ln \left(1+x^{1 / 12}\right)-4 \ln \left(x^{1 / 12}-1\right)-2 \ln \left(x^{1 / 6}-x^{1 / 12}+1\right)+2 \ln \left(x^{1 / 6}+x^{1 / 12}\right. \\
& \quad+1)+2 \ln \left(x^{1 / 4}+1\right)-\ln \left(x^{1 / 3}+x^{1 / 6}+1\right)+\ln (-1+x)+\frac{3 x^{2 / 3}}{2}
\end{aligned}
$$

Problem 156: Unable to integrate problem.

$$
\int\left(a+\frac{b}{x}\right)^{m} \mathrm{~d} x
$$

Optimal(type 5, 42 leaves, 2 steps):

$$
-\frac{b\left(a+\frac{b}{x}\right)^{1+m} \text { hypergeom }\left([2,1+m],[2+m], 1+\frac{b}{a x}\right)}{a^{2}(1+m)}
$$

Result(type 8, 11 leaves):

$$
\int\left(a+\frac{b}{x}\right)^{m} \mathrm{~d} x
$$

Problem 157: Unable to integrate problem.

$$
\int \frac{\left(a+\frac{b}{x}\right)^{m}}{(d x+c)^{3}} \mathrm{~d} x
$$

Optimal(type 5, 110 leaves, 4 steps):

$$
-\frac{d\left(a+\frac{b}{x}\right)^{1+m}}{2 c(a c-b d)\left(d+\frac{c}{x}\right)^{2}}-\frac{b(2 a c-b d(1+m))\left(a+\frac{b}{x}\right)^{1+m} \text { hypergeom }\left([2,1+m],[2+m], \frac{c\left(a+\frac{b}{x}\right)}{a c-b d}\right)}{2 c(a c-b d)^{3}(1+m)}
$$

Result(type 8, 19 leaves):

$$
\int \frac{\left(a+\frac{b}{x}\right)^{m}}{(d x+c)^{3}} \mathrm{~d} x
$$

Problem 159: Result more than twice size of optimal antiderivative.

$$
\int \frac{(d x+c)^{3 / 2}}{\sqrt{a+\frac{b}{x^{2}}}} \mathrm{~d} x
$$

Optimal(type 4, 330 leaves, 8 steps):

$$
\begin{aligned}
& \frac{2(d x+c)^{3 / 2}\left(a x^{2}+b\right)}{5 a x \sqrt{a+\frac{b}{x^{2}}}}+\frac{2 c\left(a x^{2}+b\right) \sqrt{d x+c}}{5 a x \sqrt{a+\frac{b}{x^{2}}}} \\
& +\frac{2\left(c^{2} a-3 d^{2} b\right) \text { EllipticE }\left(\frac{\sqrt{1-\frac{x \sqrt{-a}}{\sqrt{b}}} \sqrt{2}}{2}, \sqrt{-\frac{2 d \sqrt{-a} \sqrt{b}}{a c-d \sqrt{-a} \sqrt{b}}}\right) \sqrt{b} \sqrt{d x+c} \sqrt{1+\frac{a x^{2}}{b}}}{5(-a)^{3 / 2} d x \sqrt{a+\frac{b}{x^{2}}} \sqrt{\frac{a(d x+c)}{a c-d \sqrt{-a} \sqrt{b}}}}
\end{aligned}
$$

$$
-\frac{2 c\left(c^{2} a+d^{2} b\right) \text { EllipticF }\left(\frac{\sqrt{1-\frac{x \sqrt{-a}}{\sqrt{b}}} \sqrt{2}}{2}, \sqrt{-\frac{2 d \sqrt{-a} \sqrt{b}}{a c-d \sqrt{-a} \sqrt{b}}}\right) \sqrt{b} \sqrt{1+\frac{a x^{2}}{b}} \sqrt{\frac{a(d x+c)}{a c-d \sqrt{-a} \sqrt{b}}}}{}
$$

$$
5(-a)^{3 / 2} d x \sqrt{a+\frac{b}{x^{2}}} \sqrt{d x+c}
$$

Result(type 4, 1144 leaves):

$$
\begin{gathered}
\frac{1}{5 \sqrt{d x+c} d^{2} a^{2} x \sqrt{\frac{a x^{2}+b}{x^{2}}}}\left(2 \left(\sqrt { - a b } \sqrt { - \frac { (d x + c) a } { \sqrt { - a b } d - a c } } \sqrt { \frac { (- a x + \sqrt { - a b }) d } { \sqrt { - a b } d + a c } } \sqrt { \frac { (a x + \sqrt { - a b }) d } { \sqrt { - a b } d - a c } } \text { EllipticF } \left(\sqrt{-\frac{(d x+c) a}{\sqrt{-a b} d-a c}},\right.\right.\right. \\
\left.\sqrt{-\frac{\sqrt{-a b} d-a c}{\sqrt{-a b} d+a c}}\right) a c^{3} d+\sqrt{-a b} \sqrt{-\frac{(d x+c) a}{\sqrt{-a b} d-a c}} \sqrt{\frac{(-a x+\sqrt{-a b}) d}{\sqrt{-a b} d+a c}} \sqrt{\frac{(a x+\sqrt{-a b}) d}{\sqrt{-a b} d-a c}} \text { EllipticF } \sqrt{-\frac{(d x+c) a}{\sqrt{-a b} d-a c}}, \\
\left.\sqrt{-\frac{\sqrt{-a b} d-a c}{\sqrt{-a b} d+a c}}\right) b c d^{3}-3 \sqrt{-\frac{(d x+c) a}{\sqrt{-a b} d-a c}} \sqrt{\frac{(-a x+\sqrt{-a b}) d}{\sqrt{-a b} d+a c}} \sqrt{\frac{(a x+\sqrt{-a b}) d}{\sqrt{-a b} d-a c}} \\
\text { EllipticF } \sqrt{-\frac{(d x+c) a}{\sqrt{-a b} d-a c}}
\end{gathered}
$$

$$
\left.\left.\begin{array}{l}
\left.\sqrt{-\frac{\sqrt{-a b} d-a c}{\sqrt{-a b} d+a c}}\right) a b c^{2} d^{2}-3 b^{2} \sqrt{-\frac{(d x+c) a}{\sqrt{-a b} d-a c}} \sqrt{\frac{(-a x+\sqrt{-a b}) d}{\sqrt{-a b} d+a c}} \sqrt{\frac{(a x+\sqrt{-a b}) d}{\sqrt{-a b} d-a c}} \text { EllipticF }\left(\sqrt{\frac{(d x+c) a}{\sqrt{-a b} d-a c}},\right. \\
\left.\sqrt{-\frac{\sqrt{-a b} d-a c}{\sqrt{-a b} d+a c}}\right) d^{4}-\sqrt{-\frac{(d x+c) a}{\sqrt{-a b} d-a c}} \sqrt{\frac{(-a x+\sqrt{-a b}) d}{\sqrt{-a b} d+a c}} \sqrt{\frac{(a x+\sqrt{-a b}) d}{\sqrt{-a b} d-a c}} \text { EllipticE }\left(\sqrt{-\frac{(d x+c) a}{\sqrt{-a b} d-a c}}, \sqrt{-\frac{\sqrt{-a b} d-a c}{\sqrt{-a b} d+a c}}\right) a^{2} c^{4} \\
+2 \sqrt{-\frac{(d x+c) a}{\sqrt{-a b} d-a c}} \sqrt{\frac{(-a x+\sqrt{-a b}) d}{\sqrt{-a b} d+a c}} \sqrt{\frac{(a x+\sqrt{-a b}) d}{\sqrt{-a b} d-a c}} \text { EllipticE }\left(\sqrt{\frac{(d x+c) a}{\sqrt{-a b} d-a c}}, \sqrt{-\frac{\sqrt{-a b} d-a c}{\sqrt{-a b} d+a c}}\right) a b c^{2} d^{2} \\
+3 b^{2} \sqrt{-\frac{(d x+c) a}{\sqrt{-a b} d-a c}} \sqrt{\frac{(-a x+\sqrt{-a b}) d}{\sqrt{-a b} d+a c}} \sqrt{\frac{(a x+\sqrt{-a b}) d}{\sqrt{-a b} d-a c}} \text { EllipticE }\left(\sqrt{-\frac{(d x+c) a}{\sqrt{-a b} d-a c}}, \sqrt{-\frac{\sqrt{-a b} d-a c}{\sqrt{-a b} d+a c}}\right) d^{4}+x^{4} a^{2} d^{4}+3 x^{3} a^{2} c d^{3} \\
+2 x^{2} a^{2} c^{2} d^{2}+x^{2} a b d^{4}+3 x a b c d^{3}+2 a b c^{2} d^{2}
\end{array}\right)\right)
$$

Problem 174: Result more than twice size of optimal antiderivative.

$$
\int \frac{1}{x^{2} \sqrt{a+b \sqrt{d x+c}}} \mathrm{~d} x
$$

Optimal(type 3, 125 leaves, 7 steps):

Result(type 3, 264 leaves):

$$
\begin{aligned}
& -\frac{2 d \sqrt{b^{2} c} \sqrt{a+b \sqrt{d x+c}}}{c\left(-4 \sqrt{b^{2} c}-4 a\right)\left(-b \sqrt{d x+c}+\sqrt{b^{2} c}\right)} \\
& \quad \begin{array}{l}
2 d \sqrt{b^{2} c} \arctan \left(\frac{\sqrt{a+b \sqrt{d x+c}}}{\sqrt{\sqrt{b^{2} c}-a}}\right) \\
-\frac{2 d \sqrt{b^{2} c} \arctan \left(\frac{\sqrt{a+b \sqrt{d x+c}}}{\sqrt{-\sqrt{b^{2} c}-a}}\right)}{c\left(-4 \sqrt{b^{2} c}-4 a\right) \sqrt{-\sqrt{b^{2} c}-a}}-\frac{2 d \sqrt{b^{2} c} \sqrt{a+b \sqrt{d x+c}}}{c\left(4 \sqrt{b^{2} c}-4 a\right)\left(b \sqrt{d x+c}+\sqrt{b^{2} c}\right)} \\
\\
-\left(4 \sqrt{b^{2} c}-4 a\right) \sqrt{\sqrt{b^{2} c}-a}
\end{array}
\end{aligned}
$$

Problem 175: Unable to integrate problem.

$$
\int(a+b \sqrt{d x+c})^{p} \mathrm{~d} x
$$

Optimal(type 3, 58 leaves, 4 steps):

$$
-\frac{2 a(a+b \sqrt{d x+c})^{1+p}}{b^{2} d(1+p)}+\frac{2(a+b \sqrt{d x+c})^{2+p}}{b^{2} d(2+p)}
$$

Result(type 8, 15 leaves):

$$
\int(a+b \sqrt{d x+c})^{p} \mathrm{~d} x
$$

Problem 176: Unable to integrate problem.

$$
\int \frac{(a+b \sqrt{d x+c})^{p}}{x} \mathrm{~d} x
$$

Optimal(type 5, 127 leaves, 6 steps):

$$
-\frac{\operatorname{hypergeom}\left([1,1+p],[2+p], \frac{a+b \sqrt{d x+c}}{a-b \sqrt{c}}\right)(a+b \sqrt{d x+c})^{1+p}}{(1+p)(a-b \sqrt{c})}-\frac{\operatorname{hypergeom}\left([1,1+p],[2+p], \frac{a+b \sqrt{d x+c}}{a+b \sqrt{c}}\right)(a+b \sqrt{d x+c})^{1+p}}{(1+p)(a+b \sqrt{c})}
$$

Result(type 8, 19 leaves):

$$
\int \frac{(a+b \sqrt{d x+c})^{p}}{x} \mathrm{~d} x
$$

Problem 191: Result more than twice size of optimal antiderivative.

$$
\int \frac{1}{x-\sqrt{1-x}} \mathrm{~d} x
$$

Optimal(type 3, 49 leaves, 4 steps):

$$
\frac{\ln (1-\sqrt{5}+2 \sqrt{1-x})(5-\sqrt{5})}{5}+\frac{\ln (1+\sqrt{5}+2 \sqrt{1-x})(5+\sqrt{5})}{5}
$$

Result(type 3, 100 leaves):
$\frac{\ln \left(x^{2}+x-1\right)}{2}+\frac{\sqrt{5} \operatorname{arctanh}\left(\frac{(1+2 x) \sqrt{5}}{5}\right)}{5}+\frac{\ln (-x+\sqrt{1-x})}{2}+\frac{\sqrt{5} \operatorname{arctanh}\left(\frac{(2 \sqrt{1-x}+1) \sqrt{5}}{5}\right)}{5}-\frac{\ln (-x-\sqrt{1-x})}{2}$

$$
+\frac{\sqrt{5} \operatorname{arctanh}\left(\frac{(2 \sqrt{1-x}-1) \sqrt{5}}{5}\right)}{5}
$$

Problem 195: Result more than twice size of optimal antiderivative.

$$
\int \frac{x^{3}-1}{\left(x^{2}+1\right) \sqrt{x}} d x
$$

Optimal(type 3, 36 leaves, 8 steps):

$$
\frac{2 x^{3 / 2}}{3}-\arctan (\sqrt{2} \sqrt{x}-1) \sqrt{2}-\arctan (1+\sqrt{2} \sqrt{x}) \sqrt{2}
$$

Result(type 3, 96 leaves):

$$
\frac{2 x^{3 / 2}}{3}-\arctan (1+\sqrt{2} \sqrt{x}) \sqrt{2}-\arctan (\sqrt{2} \sqrt{x}-1) \sqrt{2}-\frac{\sqrt{2} \ln \left(\frac{x+\sqrt{2} \sqrt{x}+1}{x-\sqrt{2} \sqrt{x}+1}\right)}{4}-\frac{\sqrt{2} \ln \left(\frac{x-\sqrt{2} \sqrt{x}+1}{x+\sqrt{2} \sqrt{x}+1}\right)}{4}
$$

Problem 201: Result more than twice size of optimal antiderivative.

$$
\int \frac{\sqrt{\frac{x}{1+x}}}{x} d x
$$

Optimal(type 3, 6 leaves, 3 steps):

$$
2 \operatorname{arcsinh}(\sqrt{x})
$$

Result(type 3, 31 leaves):

$$
\frac{\sqrt{\frac{x}{1+x}}(1+x) \ln \left(\frac{1}{2}+x+\sqrt{x^{2}+x}\right)}{\sqrt{(1+x) x}}
$$

Problem 202: Result more than twice size of optimal antiderivative.

$$
\int \frac{\sqrt{-\frac{x}{1+x}}}{x} \mathrm{~d} x
$$

Optimal(type 3, 13 leaves, 2 steps):

$$
2 \arctan \left(\sqrt{-\frac{x}{1+x}}\right)
$$

Result(type 3, 32 leaves):

$$
\frac{\sqrt{-\frac{x}{1+x}}(1+x) \ln \left(\frac{1}{2}+x+\sqrt{x^{2}+x}\right)}{\sqrt{(1+x) x}}
$$

Problem 203: Result more than twice size of optimal antiderivative.

$$
\int \frac{\sqrt{\frac{b x+a}{d x+c}}}{b x+a} \mathrm{~d} x
$$

Optimal (type 3, 31 leaves, 3 steps):

$$
\frac{2 \operatorname{arctanh}\left(\frac{\sqrt{d} \sqrt{\frac{b x+a}{d x+c}}}{\sqrt{b}}\right)}{\sqrt{b} \sqrt{d}}
$$

Result(type 3, 79 leaves):
$\frac{\ln \left(\frac{2 b d x+2 \sqrt{(b x+a)(d x+c)} \sqrt{b d}+a d+b c}{2 \sqrt{b d}}\right)(d x+c) \sqrt{\frac{b x+a}{d x+c}}}{\sqrt{(b x+a)(d x+c)} \sqrt{b d}}$

Problem 206: Result more than twice size of optimal antiderivative.

$$
\int \frac{1}{\left(x+\sqrt{-x^{2}-2 x+3}\right)^{3}} d x
$$

Optimal(type 3, 248 leaves, 6 steps):
$\frac{12 \operatorname{arctanh}\left(\frac{\left(3-x-x \sqrt{3}-\sqrt{3} \sqrt{-x^{2}-2 x+3}\right) \sqrt{7}}{7 x}\right) \sqrt{7}}{343}$

Result(type ?, 5999 leaves): Display of huge result suppressed!
Problem 209: Result more than twice size of optimal antiderivative.

$$
\int \frac{1}{\left(x+\sqrt{-x^{2}-4 x-3}\right)^{2}} \mathrm{~d} x
$$

Optimal (type 3, 73 leaves, 5 steps):

$$
\frac{\arctan \left(\frac{\left(1-\frac{3 \sqrt{-1-x}}{\sqrt{3+x}}\right) \sqrt{2}}{2}\right) \sqrt{2}}{2}+\frac{1-\frac{\sqrt{-1-x}}{\sqrt{3+x}}}{1-\frac{3(1+x)}{3+x}-\frac{2 \sqrt{-1-x}}{\sqrt{3+x}}}
$$

Result(type ?, 2406 leaves): Display of huge result suppressed!
Problem 211: Result more than twice size of optimal antiderivative.

$$
\int \frac{1}{\left(-x^{4}+4 x^{3}-8 x^{2}+8 x\right)^{5 / 2}} d x
$$

Optimal(type 4, 93 leaves, 7 steps):

$$
\frac{\left(5+(-1+x)^{2}\right)(-1+x)}{72\left(3-2(-1+x)^{2}-(-1+x)^{4}\right)^{3 / 2}}-\frac{7 \text { EllipticE }\left(-1+x, \frac{\mathrm{I}}{3} \sqrt{3}\right) \sqrt{3}}{432}+\frac{11 \operatorname{EllipticF}\left(-1+x, \frac{\mathrm{I}}{3} \sqrt{3}\right) \sqrt{3}}{432}+\frac{\left(26+7(-1+x)^{2}\right)(-1+x)}{432 \sqrt{3-2(-1+x)^{2}-(-1+x)^{4}}}
$$

Result(type 4, 1038 leaves):

$$
\begin{aligned}
& -\frac{\sqrt{-x^{4}+4 x^{3}-8 x^{2}+8 x}}{768 x^{2}}-\frac{-x^{3}+4 x^{2}-8 x+8}{96 \sqrt{x\left(-x^{3}+4 x^{2}-8 x+8\right)}}+\frac{\left(\frac{1}{36}+\frac{1}{288} x^{2}-\frac{1}{96} x\right) \sqrt{-x^{4}+4 x^{3}-8 x^{2}+8 x}}{\left(x^{3}-4 x^{2}+8 x-8\right)^{2}}+\frac{2 x\left(\frac{53}{3456}+\frac{5}{1728} x^{2}-\frac{19}{4608} x\right)}{\sqrt{-x\left(x^{3}-4 x^{2}+8 x-8\right)}} \\
& +\frac{1}{216(-1-\mathrm{I} \sqrt{3}) \sqrt{-x(-2+x)(x-\mathrm{I} \sqrt{3}-1)(x-1+\mathrm{I} \sqrt{3})}}\left(5(\mathrm{I} \sqrt{3}-1) \sqrt{\frac{(-1-\mathrm{I} \sqrt{3}) x}{(1-\mathrm{I} \sqrt{3})(-2+x)}}(-2\right. \\
& +x)^{2} \sqrt{\frac{x-\mathrm{I} \sqrt{3}-1}{(\mathrm{I} \sqrt{3}+1)(-2+x)}} \sqrt{\frac{x-1+\mathrm{I} \sqrt{3}}{(1-\mathrm{I} \sqrt{3})(-2+x)}} \operatorname{EllipticF}\left(\sqrt{\left.\left.\frac{(-1-\mathrm{I} \sqrt{3}) x}{(1-\mathrm{I} \sqrt{3})(-2+x)}, \sqrt{\frac{(1-\mathrm{I} \sqrt{3})(\mathrm{I} \sqrt{3}-1)}{(-1-\mathrm{I} \sqrt{3})(\mathrm{I} \sqrt{3}+1)}}\right)\right)}\right. \\
& +\frac{1}{108(-1-\mathrm{I} \sqrt{3}) \sqrt{-x(-2+x)(x-\mathrm{I} \sqrt{3}-1)(x-1+\mathrm{I} \sqrt{3})}}\left(7(\mathrm{I} \sqrt{3}-1) \sqrt{\frac{(-1-\mathrm{I} \sqrt{3}) x}{(1-\mathrm{I} \sqrt{3})(-2+x)}}(-2\right. \\
& +x)^{2} \sqrt{\frac{x-\mathrm{I} \sqrt{3}-1}{(\mathrm{I} \sqrt{3}+1)(-2+x)}} \sqrt{\frac{x-1+\mathrm{I} \sqrt{3}}{(1-\mathrm{I} \sqrt{3})(-2+x)}}\left(2 \operatorname{EllipticF}\left(\sqrt{\frac{(-1-\mathrm{I} \sqrt{3}) x}{(1-\mathrm{I} \sqrt{3})(-2+x)}}, \sqrt{\frac{(1-\mathrm{I} \sqrt{3})(\mathrm{I} \sqrt{3}-1)}{(-1-\mathrm{I} \sqrt{3})(\mathrm{I} \sqrt{3}+1)}}\right)\right. \\
& \text { - 2 EllipticPi } \left.\left.\left(\sqrt{\frac{(-1-\mathrm{I} \sqrt{3}) x}{(1-\mathrm{I} \sqrt{3})(-2+x)}}, \frac{1-\mathrm{I} \sqrt{3}}{-1-\mathrm{I} \sqrt{3}}, \sqrt{\frac{(1-\mathrm{I} \sqrt{3})(\mathrm{I} \sqrt{3}-1)}{(-1-\mathrm{I} \sqrt{3})(\mathrm{I} \sqrt{3}+1)}}\right)\right)\right)
\end{aligned}
$$

Problem 212: Result more than twice size of optimal antiderivative.

$$
\int \frac{1}{\left((2-x) x\left(x^{2}-2 x+4\right)\right)^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 4, 61 leaves, 6 steps):

$$
-\frac{\text { EllipticE }\left(-1+x, \frac{\mathrm{I}}{3} \sqrt{3}\right) \sqrt{3}}{24}+\frac{\text { EllipticF }\left(-1+x, \frac{\mathrm{I}}{3} \sqrt{3}\right) \sqrt{3}}{12}+\frac{\left(5+(-1+x)^{2}\right)(-1+x)}{24 \sqrt{3-2(-1+x)^{2}-(-1+x)^{4}}}
$$

Result(type 4, 962 leaves):

$$
-\frac{-x^{3}+4 x^{2}-8 x+8}{32 \sqrt{x\left(-x^{3}+4 x^{2}-8 x+8\right)}}+\frac{2 x\left(\frac{1}{24}+\frac{x^{2}}{192}\right)}{\sqrt{-x\left(x^{3}-4 x^{2}+8 x-8\right)}}+\frac{1}{6(-1-\mathrm{I} \sqrt{3}) \sqrt{-x(-2+x)(x-\mathrm{I} \sqrt{3}-1)(x-1+\mathrm{I} \sqrt{3})}}((\mathrm{I} \sqrt{3}
$$

$$
-1) \sqrt{\frac{(-1-\mathrm{I} \sqrt{3}) x}{(1-\mathrm{I} \sqrt{3})(-2+x)}}(-2+x)^{2} \sqrt{\frac{x-\mathrm{I} \sqrt{3}-1}{(\mathrm{I} \sqrt{3}+1)(-2+x)}} \sqrt{\frac{x-1+\mathrm{I} \sqrt{3}}{(1-\mathrm{I} \sqrt{3})(-2+x)}} \text { EllipticF } \sqrt{\frac{(-1-\mathrm{I} \sqrt{3}) x}{(1-\mathrm{I} \sqrt{3})(-2+x)}}
$$

$$
\left.\left.\sqrt{\frac{(1-\mathrm{I} \sqrt{3})(\mathrm{I} \sqrt{3}-1)}{(-1-\mathrm{I} \sqrt{3})(\mathrm{I} \sqrt{3}+1)}}\right)\right)+\frac{1}{6(-1-\mathrm{I} \sqrt{3}) \sqrt{-x(-2+x)(x-\mathrm{I} \sqrt{3}-1)(x-1+\mathrm{I} \sqrt{3})}}((\mathrm{I} \sqrt{3}
$$

$$
-1) \sqrt{\frac{(-1-\mathrm{I} \sqrt{3}) x}{(1-\mathrm{I} \sqrt{3})(-2+x)}}(-2+x)^{2} \sqrt{\frac{x-\mathrm{I} \sqrt{3}-1}{(\mathrm{I} \sqrt{3}+1)(-2+x)}} \sqrt{\frac{x-1+\mathrm{I} \sqrt{3}}{(1-\mathrm{I} \sqrt{3})(-2+x)}}\left(2 \text { EllipticF } \sqrt{\frac{(-1-\mathrm{I} \sqrt{3}) x}{(1-\mathrm{I} \sqrt{3})(-2+x)}}\right.
$$

$$
\begin{aligned}
& -\frac{1}{432 \sqrt{-x(-2+x)(x-\mathrm{I} \sqrt{3}-1)(x-1+\mathrm{I} \sqrt{3})}}\left(7 \left(x(x-\mathrm{I} \sqrt{3}-1)(x-1+\mathrm{I} \sqrt{3})+2(\mathrm{I} \sqrt{3}-1) \sqrt{\frac{(-1-\mathrm{I} \sqrt{3}) x}{(1-\mathrm{I} \sqrt{3})(-2+x)}}(-2\right.\right. \\
& +x)^{2} \sqrt{\frac{x-\mathrm{I} \sqrt{3}-1}{(\mathrm{I} \sqrt{3}+1)(-2+x)}} \sqrt{\frac{x-1+\mathrm{I} \sqrt{3}}{(1-\mathrm{I} \sqrt{3})(-2+x)}}\left(\frac{(6-2 \mathrm{I} \sqrt{3}) \operatorname{EllipticF}\left(\sqrt{\frac{(-1-\mathrm{I} \sqrt{3}) x}{(1-\mathrm{I} \sqrt{3})(-2+x)}}, \sqrt{\frac{(1-\mathrm{I} \sqrt{3})(\mathrm{I} \sqrt{3}-1)}{(-1-\mathrm{I} \sqrt{3})(\mathrm{I} \sqrt{3}+1)}}\right)}{2(-1-\mathrm{I} \sqrt{3})}\right. \\
& +\frac{(-1-\mathrm{I} \sqrt{3}) \text { EllipticE }\left(\sqrt{\frac{(-1-\mathrm{I} \sqrt{3}) x}{(1-\mathrm{I} \sqrt{3})(-2+x)}}, \sqrt{\frac{(1-\mathrm{I} \sqrt{3})(\mathrm{I} \sqrt{3}-1)}{(-1-\mathrm{I} \sqrt{3})(\mathrm{I} \sqrt{3}+1)}}\right)}{2} \\
& \left.\left.\left.-\frac{4 \text { EllipticPi }\left(\sqrt{\frac{(-1-\mathrm{I} \sqrt{3}) x}{(1-\mathrm{I} \sqrt{3})(-2+x)}}, \frac{\mathrm{I} \sqrt{3}-1}{\mathrm{I} \sqrt{3}+1}, \sqrt{\frac{(1-\mathrm{I} \sqrt{3})(\mathrm{I} \sqrt{3}-1)}{(-1-\mathrm{I} \sqrt{3})(\mathrm{I} \sqrt{3}+1)}}\right)}{-1-\mathrm{I} \sqrt{3}}\right)\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left.\left.\sqrt{\frac{(1-\mathrm{I} \sqrt{3})(\mathrm{I} \sqrt{3}-1)}{(-1-\mathrm{I} \sqrt{3})(\mathrm{I} \sqrt{3}+1)}}\right)-2 \text { EllipticPi }\left(\sqrt{\frac{(-1-\mathrm{I} \sqrt{3}) x}{(1-\mathrm{I} \sqrt{3})(-2+x)}}, \frac{1-\mathrm{I} \sqrt{3}}{-1-\mathrm{I} \sqrt{3}}, \sqrt{\frac{(1-\mathrm{I} \sqrt{3})(\mathrm{I} \sqrt{3}-1)}{(-1-\mathrm{I} \sqrt{3})(\mathrm{I} \sqrt{3}+1)}}\right)\right)\right) \\
& -\frac{1}{24 \sqrt{-x(-2+x)(x-\mathrm{I} \sqrt{3}-1)(x-1+\mathrm{I} \sqrt{3})}}\left(x(x-\mathrm{I} \sqrt{3}-1)(x-1+\mathrm{I} \sqrt{3})+2(\mathrm{I} \sqrt{3}-1) \sqrt{\frac{(-1-\mathrm{I} \sqrt{3}) x}{(1-\mathrm{I} \sqrt{3})(-2+x)}}(-2\right. \\
& +x)^{2} \sqrt{\frac{x-\mathrm{I} \sqrt{3}-1}{(\mathrm{I} \sqrt{3}+1)(-2+x)}} \sqrt{\frac{x-1+\mathrm{I} \sqrt{3}}{(1-\mathrm{I} \sqrt{3})(-2+x)}}\left(\frac{(6-2 \mathrm{I} \sqrt{3}) \operatorname{EllipticF}\left(\sqrt{\frac{(-1-\mathrm{I} \sqrt{3}) x}{(1-\mathrm{I} \sqrt{3})(-2+x)}}, \sqrt{\left.\frac{(1-\mathrm{I} \sqrt{3})(\mathrm{I} \sqrt{3}-1)}{(-1-\mathrm{I} \sqrt{3})(\mathrm{I} \sqrt{3}+1)}\right)}\right.}{2(-1-\mathrm{I} \sqrt{3})}\right. \\
& +\frac{(-1-\mathrm{I} \sqrt{3}) \text { EllipticE }\left(\sqrt{\frac{(-1-\mathrm{I} \sqrt{3}) x}{(1-\mathrm{I} \sqrt{3})(-2+x)}}, \sqrt{\frac{(1-\mathrm{I} \sqrt{3})(\mathrm{I} \sqrt{3}-1)}{(-1-\mathrm{I} \sqrt{3})(\mathrm{I} \sqrt{3}+1)}}\right)}{2} \\
& \left.\left.-\frac{4 \text { EllipticPi }\left(\sqrt{\frac{(-1-\mathrm{I} \sqrt{3}) x}{(1-\mathrm{I} \sqrt{3})(-2+x)}}, \frac{\mathrm{I} \sqrt{3}-1}{\mathrm{I} \sqrt{3}+1}, \sqrt{\frac{(1-\mathrm{I} \sqrt{3})(\mathrm{I} \sqrt{3}-1)}{(-1-\mathrm{I} \sqrt{3})(\mathrm{I} \sqrt{3}+1)}}\right)}{-1-\mathrm{I} \sqrt{3}}\right)\right)
\end{aligned}
$$

Problem 213: Result more than twice size of optimal antiderivative.

$$
\int \sqrt{d^{2} x^{4}+4 c d x^{3}+4 x^{2} c^{2}+4 a c} \mathrm{~d} x
$$

Optimal(type 4, 668 leaves, 5 steps):

$$
\begin{aligned}
& \frac{\left(\frac{c}{d}+x\right) \sqrt{d^{2} x^{4}+4 c d x^{3}+4 x^{2} c^{2}+4 a c}}{3}-\frac{2 c^{2}\left(\frac{c}{d}+x\right) \sqrt{d^{2} x^{4}+4 c d x^{3}+4 x^{2} c^{2}+4 a c}}{3\left(\sqrt{c}+\frac{d^{2}\left(\frac{c}{d}+x\right)^{2}}{\sqrt{4 a d^{2}+c^{3}}}\right) \sqrt{4 a d^{2}+c^{3}}} \\
& +\frac{1}{3 \cos \left(2 \arctan \left(\frac{d x+c}{c^{1 / 4}\left(4 a d^{2}+c^{3}\right)^{1 / 4}}\right)\right) d^{3} \sqrt{d^{2} x^{4}+4 c d x^{3}+4 x^{2} c^{2}+4 a c}}\left(2 c^{9 / 4}\left(4 a d^{2}+c^{3}\right)^{3 /}\right.
\end{aligned}
$$

$\sqrt[4]{\cos \left(2 \arctan \left(\frac{d x+c}{c^{1 / 4}\left(4 a d^{2}+c^{3}\right)^{1 / 4}}\right)\right)^{2}}$ EllipticE $\left(\sin \left(2 \arctan \left(\frac{d x+c}{c^{1 / 4}\left(4 a d^{2}+c^{3}\right)^{1 / 4}}\right)\right), \frac{\sqrt{2+\frac{2 c^{3 / 2}}{\sqrt{4 a d^{2}+c^{3}}}}}{2}\right) \sqrt{c}$

$$
\left.\left.+\frac{d^{2}\left(\frac{c}{d}+x\right)^{2}}{\sqrt{4 a d^{2}+c^{3}}}\right) \sqrt{\frac{d^{2}\left(d^{2} x^{4}+4 c d x^{3}+4 x^{2} c^{2}+4 a c\right)}{\left(4 a d^{2}+c^{3}\right)\left(\sqrt{c}+\frac{d^{2}\left(\frac{c}{d}+x\right)^{2}}{\sqrt{4 a d^{2}+c^{3}}}\right)^{2}}}\right)
$$

$$
+\frac{1}{3 \cos \left(2 \arctan \left(\frac{d x+c}{c^{1 / 4}\left(4 a d^{2}+c^{3}\right)^{1 / 4}}\right)\right) d^{3} \sqrt{d^{2} x^{4}+4 c d x^{3}+4 x^{2} c^{2}+4 a c}}\left(c^{3 / 4}\left(4 a d^{2}+c^{3}\right)^{1 /}\right.
$$

$\sqrt[4]{\cos \left(2 \arctan \left(\frac{d x+c}{c^{1 / 4}\left(4 a d^{2}+c^{3}\right)^{1 / 4}}\right)\right)^{2}} \operatorname{EllipticF}\left(\sin \left(2 \arctan \left(\frac{d x+c}{c^{1 / 4}\left(4 a d^{2}+c^{3}\right)^{1 / 4}}\right)\right), \frac{\sqrt{2+\frac{2 c^{3 / 2}}{\sqrt{4 a d^{2}+c^{3}}}}}{2}\right)\left(\sqrt{c}+\frac{d^{2}\left(\frac{c}{d}+x\right)^{2}}{\sqrt{4 a d^{2}+c^{3}}}\right)\left(c^{3}\right.$

$$
\left.\left.+4 a d^{2}-c^{3 / 2} \sqrt{4 a d^{2}+c^{3}}\right) \sqrt{\frac{d^{2}\left(d^{2} x^{4}+4 c d x^{3}+4 x^{2} c^{2}+4 a c\right)}{\left(4 a d^{2}+c^{3}\right)\left(\sqrt{c}+\frac{d^{2}\left(\frac{c}{d}+x\right)^{2}}{\sqrt{4 a d^{2}+c^{3}}}\right)^{2}}}\right)
$$

Result(type ?, 4889 leaves): Display of huge result suppressed!
Problem 214: Result more than twice size of optimal antiderivative.

$$
\int \sqrt{8 e^{3} x^{4}+8 d e^{2} x^{3}-d^{3} x+8 a e^{2}} \mathrm{~d} x
$$

Optimal(type 4, 715 leaves, 5 steps):

$$
\frac{\left(\frac{d}{4 e}+x\right) \sqrt{8 e^{3} x^{4}+8 d e^{2} x^{3}-d^{3} x+8 a e^{2}}}{3}-\frac{2 d^{2}\left(\frac{d}{4 e}+x\right) \sqrt{8 e^{3} x^{4}+8 d e^{2} x^{3}-d^{3} x+8 a e^{2}}}{\left(1+\frac{16 e^{2}\left(\frac{d}{4 e}+x\right)^{2}}{\sqrt{256 a e^{3}+5 d^{4}}}\right) \sqrt{256 a e^{3}+5 d^{4}}}
$$

$$
+\frac{1}{16 \cos \left(2 \arctan \left(\frac{4 e x+d}{\left(256 a e^{3}+5 d^{4}\right)^{1 / 4}}\right)\right) e^{2} \sqrt{8 e^{3} x^{4}+8 d e^{2} x^{3}-d^{3} x+8 a e^{2}}}\left(d^{2}\left(256 a e^{3}+5 d^{4}\right)^{3 /}\right.
$$

$$
\sqrt[4]{\cos \left(2 \arctan \left(\frac{4 e x+d}{\left(256 a e^{3}+5 d^{4}\right)^{1 / 4}}\right)\right)^{2}} \operatorname{EllipticE}\left(\sin \left(2 \arctan \left(\frac{4 e x+d}{\left(256 a e^{3}+5 d^{4}\right)^{1 / 4}}\right)\right), \frac{\sqrt{2+\frac{6 d^{2}}{\sqrt{256 a e^{3}+5 d^{4}}}}}{2}\right)(1
$$

$$
\left.+\frac{16 e^{2}\left(\frac{d}{4 e}+x\right)^{2}}{\sqrt{256 a e^{3}+5 d^{4}}} \sqrt{\frac{e\left(8 e^{3} x^{4}+8 d e^{2} x^{3}-d^{3} x+8 a e^{2}\right)}{\left(256 a e^{3}+5 d^{4}\right)\left(1+\frac{16 e^{2}\left(\frac{d}{4 e}+x\right)^{2}}{\sqrt{256 a e^{3}+5 d^{4}}}\right)^{2}}} \sqrt{2}\right)
$$

$$
+\frac{1}{96 \cos \left(2 \arctan \left(\frac{4 e x+d}{\left(256 a e^{3}+5 d^{4}\right)^{1 / 4}}\right)\right) e^{2} \sqrt{8 e^{3} x^{4}+8 d e^{2} x^{3}-d^{3} x+8 a e^{2}}}\left(\left(256 a e^{3}+5 d^{4}\right)^{1 /}\right.
$$

$$
\sqrt[4]{\cos \left(2 \arctan \left(\frac{4 e x+d}{\left(256 a e^{3}+5 d^{4}\right)^{1 / 4}}\right)\right)^{2}} \operatorname{EllipticF}\left(\sin \left(2 \arctan \left(\frac{4 e x+d}{\left(256 a e^{3}+5 d^{4}\right)^{1 / 4}}\right)\right), \frac{\sqrt{2+\frac{6 d^{2}}{\sqrt{256 a e^{3}+5 d^{4}}}}}{2}\right)(1
$$

$$
\left.+\frac{16 e^{2}\left(\frac{d}{4 e}+x\right)^{2}}{\sqrt{256 a e^{3}+5 d^{4}}}\right)\left(5 d^{4}+256 a e^{3}-3 d^{2} \sqrt{256 a e^{3}+5 d^{4}}\right) \quad\left(\frac{e\left(8 e^{3} x^{4}+8 d e^{2} x^{3}-d^{3} x+8 a e^{2}\right)}{\left(256 a e^{3}+5 d^{4}\right)\left(1+\frac{16 e^{2}\left(\frac{d}{4 e}+x\right)^{2}}{\sqrt{256 a e^{3}+5 d^{4}}}\right)} \sqrt{2}\right)
$$

Result(type ?, 7886 leaves): Display of huge result suppressed!
Problem 215: Result more than twice size of optimal antiderivative.

$$
\int \sqrt{-x^{4}+4 x^{3}-8 x^{2}+a+8 x} \mathrm{~d} x
$$

Optimal(type 4, 455 leaves, 7 steps):

$$
\begin{gathered}
-\frac{2(-1+x)\left(1+\frac{(-1+x)^{2}}{1-\sqrt{4+a}}\right)(1-\sqrt{4+a})}{3 \sqrt{3+a-2(-1+x)^{2}-(-1+x)^{4}}}+\frac{(-1+x) \sqrt{3+a-2(-1+x)^{2}-(-1+x)^{4}}}{3} \\
+\frac{1}{3 \sqrt{1+\frac{(-1+x)^{2}}{1-\sqrt{4+a}}}} \\
\quad 2(3 \\
\frac{1+\frac{(-1+x)^{2}}{1+\sqrt{4+a}}}{1+2(-1+x)^{2}-(-1+x)^{4}}
\end{gathered}
$$

$$
+a) \sqrt{\frac{1}{1+\frac{(-1+x)^{2}}{1+\sqrt{4+a}}}} \sqrt{1+\frac{(-1+x)^{2}}{1+\sqrt{4+a}}} \text { EllipticF }\left(\frac{-1+x}{\sqrt{1+\sqrt{4+a}} \sqrt{1+\frac{(-1+x)^{2}}{1+\sqrt{4+a}}}}, \sqrt{-\frac{2 \sqrt{4+a}}{1-\sqrt{4+a}}}\right)(1
$$

$$
\left.\left.+\frac{(-1+x)^{2}}{1-\sqrt{4+a}}\right) \sqrt{1+\sqrt{4+a}}\right)
$$

$$
\left.\left.\left(\sqrt{1+\sqrt{4+a}} \sqrt{1+\frac{(-1+x)^{2}}{1+\sqrt{4+a}}}\right)(-1+x), \sqrt{-\frac{2 \sqrt{4+a}}{1-\sqrt{4+a}}}\right)\left(1+\frac{(-1+x)^{2}}{1-\sqrt{4+a}}\right)(1-\sqrt{4+a}) \sqrt{1+\sqrt{4+a}}\right)
$$

Result(type ?, 2518 leaves): Display of huge result suppressed!
Problem 216: Result more than twice size of optimal antiderivative.

$$
\int x \sqrt{-x^{4}+4 x^{3}-8 x^{2}+a+8 x} \mathrm{~d} x
$$

Optimal(type 4, 516 leaves, 12 steps):

$$
\begin{gathered}
\frac{(4+a) \arctan \left(\frac{1+(-1+x)^{2}}{\sqrt{3+a-2(-1+x)^{2}-(-1+x)^{4}}}\right)}{4}-\frac{2(-1+x)\left(1+\frac{(-1+x)^{2}}{1-\sqrt{4+a}}\right)(1-\sqrt{4+a})}{4} \sqrt{3 \sqrt{3+a-2(-1+x)^{2}-(-1+x)^{4}}} \\
+\frac{\left(1+(-1+x)^{2}\right) \sqrt{3+a-2(-1+x)^{2}-(-1+x)^{4}}}{4}+\frac{(-1+x) \sqrt{3+a-2(-1+x)^{2}-(-1+x)^{4}}}{3} \\
+\frac{1+\frac{(-1+x)^{2}}{1-\sqrt{4+a}}}{3 \sqrt{\frac{(-1+x)^{2}}{1+\sqrt{4+a}}}}
\end{gathered}
$$

$$
+a) \sqrt{\frac{1}{1+\frac{(-1+x)^{2}}{1+\sqrt{4+a}}}} \sqrt{1+\frac{(-1+x)^{2}}{1+\sqrt{4+a}}} \text { EllipticF }\left(\frac{-1+x}{\sqrt{1+\sqrt{4+a}} \sqrt{1+\frac{(-1+x)^{2}}{1+\sqrt{4+a}}}}, \sqrt{-\frac{2 \sqrt{4+a}}{1-\sqrt{4+a}}}\right)(1
$$

$$
\left.\left.+\frac{(-1+x)^{2}}{1-\sqrt{4+a}}\right) \sqrt{1+\sqrt{4+a}}\right)
$$

$$
\left.\left.\left(\sqrt{1+\sqrt{4+a}} \sqrt{1+\frac{(-1+x)^{2}}{1+\sqrt{4+a}}}\right)(-1+x), \sqrt{-\frac{2 \sqrt{4+a}}{1-\sqrt{4+a}}}\right)\left(1+\frac{(-1+x)^{2}}{1-\sqrt{4+a}}\right)(1-\sqrt{4+a}) \sqrt{1+\sqrt{4+a}}\right)
$$

Result(type ?, 2550 leaves): Display of huge result suppressed!
Problem 217: Result more than twice size of optimal antiderivative.

$$
\int \frac{1}{\sqrt{8 x^{4}-x^{3}+8 x+8}} d x
$$

Optimal(type 4, 155 leaves, 4 steps):
$-\frac{1}{696 \cos \left(2 \arctan \left(\frac{(4+x) 29^{3} / 4 \sqrt{3}}{87 x}\right)\right) \sqrt{8 x^{4}-x^{3}+8 x+8}}\left(x^{2} \sqrt{\cos \left(2 \arctan \left(\frac{(4+x) 29^{3} / 4 \sqrt{3}}{87 x}\right)\right)^{2}} \operatorname{EllipticF}\left(\sin \left(2 \arctan \left(\frac{1}{87 x}((4\right.\right.\right.\right.$

$$
\left.\left.\left.\left.+x) 29^{3} / 4 \sqrt{3}\right)\right), \frac{\sqrt{1682+58 \sqrt{29}}}{58}\right)\left(87+\frac{(4+x)^{2} \sqrt{29}}{x^{2}}\right) \sqrt{\frac{261-6\left(1+\frac{4}{x}\right)^{2}+\left(1+\frac{4}{x}\right)^{4}}{\left(87+\frac{(4+x)^{2} \sqrt{29}}{x^{2}}\right)^{2}}} 29^{3 / 4} \sqrt{3}\right)
$$

Result(type 4, 964 leaves):
$\left(\left(\operatorname{RootOf}\left(8 Z^{4}-Z^{3}+8 _Z+8\right.\right.\right.$, index $\left.=1\right)-\operatorname{RootOf}\left(8 Z^{4}-Z_{-} Z^{3}+8 _Z+8\right.$, index

=4))

$\sqrt{\frac{\left(\operatorname{RootOf}\left(8 Z^{4}-Z^{3}+8 _Z+8, \text { index }=4\right)-\operatorname{RootOf}\left(8 Z^{4}-Z^{3}+8 _Z+8, \text { index }=2\right)\right)\left(x-\operatorname{RootOf}\left(8 Z^{4}-Z_{-} Z^{3}+8 _Z+8, \text { index }=1\right)\right)}{\left(\operatorname{RootOf}\left(8 Z^{4}-Z^{3}+8 _Z+8, \text { index }=4\right)-\operatorname{RootOf}\left(8 Z^{4}-Z^{3}+8 _Z+8, \text { index }=1\right)\right)\left(x-\operatorname{RootOf}\left(8 Z_{-}^{4}-Z_{-}+8 _Z+8, \text { index }=2\right)\right)}}(x$
$-\operatorname{RootOf}\left(8 Z^{4}-{ }_{-} Z^{3}+8 _Z+8\right.$, index $\left.\left.=2\right)\right)$
$2 \sqrt{\frac{\left(\operatorname{RootOf}\left(8 _Z^{4}-Z^{3}+8 _Z+8, \text { index }=2\right)-\operatorname{RootOf}\left(8 _Z^{4}-Z_{-} Z^{3}+8_{_} Z+8, \text { index }=1\right)\right)\left(x-\operatorname{RootOf}\left(8 _Z^{4}-Z^{3}+8 _Z+8, \text { index }=3\right)\right)}{\left(\operatorname{RootOf}\left(8 _Z^{4}-Z^{3}+8 _Z+8, \text { index }=3\right)-\operatorname{RootOf}\left(8_{-} Z^{4}-Z_{-} Z^{3}+8_{_} Z+8, \text { index }=1\right)\right)\left(x-\operatorname{RootOf}\left(8 _Z^{4}-Z^{3}+8 _Z+8, \text { index }=2\right)\right)}}$
$\sqrt{\frac{\left(\operatorname{RootOf}\left(8 Z^{4}-Z^{3}+8 _Z+8, \text { index }=2\right)-\operatorname{RootOf}\left(8 _Z^{4}-Z^{3}+8 _Z+8, \text { index }=1\right)\right)\left(x-\operatorname{RootOf}\left(8 Z^{4}-Z^{3}+8 _Z+8, \text { index }=4\right)\right)}{\left(\operatorname{RootOf}\left(8 Z^{4}-Z^{3}+8 _Z+8, \text { index }=4\right)-\operatorname{RootOf}\left(8 _Z^{4}-Z^{3}+8 _Z+8, \text { index }=1\right)\right)\left(x-\operatorname{RootOf}\left(8 Z^{4}-Z^{3}+8 _Z+8, \text { index }=2\right)\right)}} \sqrt{2}$
EllipticF
$\sqrt{\frac{\left(\operatorname{RootOf}\left(8 _Z^{4}-Z^{3}+8 _Z+8, \text { index }=4\right)-\operatorname{RootOf}\left(8 _Z^{4}-Z^{3}+8 _Z+8, \text { index }=2\right)\right)\left(x-\operatorname{RootOf}\left(8 _Z^{4}-Z^{3}+8 _Z+8, \text { index }=1\right)\right)}{\left(\text { RootOf }\left(8 _Z^{4}-Z^{3}+8 _Z+8, \text { index }=4\right)-\operatorname{RootOf}\left(8 Z^{4}-Z^{3}+8 _Z+8, \text { index }=1\right)\right)\left(x-\operatorname{RootOf}\left(8 Z^{4}-Z^{3}+8 _Z+8, \text { index }=2\right)\right)}}$,
$\left(\left(\left(\operatorname{RootOf}\left(8 Z^{4}-Z^{3}+8 _Z+8\right.\right.\right.\right.$, index $\left.=2\right)-\operatorname{RootOf}\left(8 _Z^{4}-Z^{3}+8 _Z+8\right.$, index $\left.\left.=3\right)\right)\left(\operatorname{RootOf}\left(8 _Z^{4}-Z^{3}+8 _Z+8\right.\right.$, index $\left.=1\right)$
$-\operatorname{RootOf}\left(8 _Z^{4}-Z^{3}+8 _Z+8\right.$, index $\left.\left.\left.=4\right)\right)\right) /\left(\left(\operatorname{RootOf}\left(8 _Z^{4}-Z^{3}+8 _Z+8\right.\right.\right.$, index $\left.=1\right)-\operatorname{RootOf}\left(8 _Z^{4}-Z^{3}+8 _Z+8\right.$, index
$=3))\left(\operatorname{RootOf}\left(8 Z_{-} Z^{-} Z^{3}+8_{-} Z+8\right.\right.$, index $\left.=2\right)-\operatorname{RootOf}\left(8 Z^{4}-Z^{3}+8_{-} Z+8\right.$, index $\left.\left.\left.\left.\left.\left.=4\right)\right)\right)\right)^{1 / 2}\right)\right) /\left(2\left(\operatorname{RootOf}\left(8 Z_{-} Z^{4}-Z^{3}+8_{-} Z+8\right.\right.\right.$, index
$=4)-\operatorname{RootOf}\left(8 _Z^{4}-Z^{3}+8 _Z+8\right.$, index $\left.\left.=2\right)\right)\left(\operatorname{RootOf}\left(8 _Z^{4}-Z^{3}+8 _Z+8\right.\right.$, index $\left.=2\right)-\operatorname{RootOf}\left(8 _Z^{4}-Z^{3}+8 _Z+8\right.$, index
=1))
$\left(\left(x-\operatorname{RootOf}\left(8 _Z^{4}-Z^{3}+8 _Z+8\right.\right.\right.$, index $\left.\left.=1\right)\right)\left(x-\operatorname{RootOf}\left(8 _Z^{4}-Z^{3}+8 _Z+8\right.\right.$, index $\left.\left.=2\right)\right)\left(x-\operatorname{RootOf}\left(8 _Z^{4}-Z^{3}+8 _Z+8\right.\right.$, index $\left.\left.=3\right)\right)(x-\operatorname{RootOf}$ =4)) $)^{1 / 2}$)

Problem 218: Result more than twice size of optimal antiderivative.

Optimal(type 4, 156 leaves, 4 steps):
$-\frac{1}{7356 \cos \left(2 \arctan \left(\frac{(6-x) 613^{3 / 4}}{613 x}\right)\right) \sqrt{3 x^{4}+15 x^{3}-44 x^{2}-6 x+9}}\left(x^{2} \sqrt{\cos \left(2 \arctan \left(\frac{(6-x) 613^{3 / 4}}{613 x}\right)\right)^{2}} \operatorname{EllipticF}\left(\sin \left(2 \arctan \left(\frac{1}{613 x}((6\right.\right.\right.\right.$

$$
\left.\left.\left.\left.\left.-x) 613^{3 / 4}\right)\right)\right), \frac{\sqrt{751538+111566 \sqrt{613}}}{1226}\right)\left(\frac{(6-x)^{2}}{x^{2}}+\sqrt{613}\right) \sqrt{\frac{613-182\left(1-\frac{6}{x}\right)^{2}+\left(-1+\frac{6}{x}\right)^{4}}{\left(\frac{(6-x)^{2}}{x^{2}}+\sqrt{613}\right)^{2}} 613^{3} / 4}\right)
$$

Result(type 4, 1181 leaves):
$\left(2\left(-\operatorname{RootOf}\left(3 _Z^{4}+15 _Z^{3}-44 _Z^{2}-6 _Z+9\right.\right.\right.$, index $\left.=4\right)+\operatorname{RootOf}\left(3 _Z^{4}+15 Z^{3}-44 _^{2}-6 _Z+9\right.$, index
=1))
$\left(\left(\left(x-\operatorname{RootOf}\left(3 _Z^{4}+15 _Z^{3}-44 _Z^{2}-6 _Z+9\right.\right.\right.\right.$, index $\left.\left.=1\right)\right)\left(-\operatorname{RootOf}\left(3 _Z^{4}+15 _Z^{3}-44 _Z^{2}-6 _Z+9\right.\right.$, index $\left.=4\right)+\operatorname{RootOf}\left(3 _Z^{4}+15 _Z^{3}-44 _Z^{2}-6 _\right.$
$+\operatorname{RootOf}\left(3 Z^{4}+15 _Z^{3}-44 _Z^{2}-6 _Z+9\right.$, index $\left.\left.=1\right)\right)\left(x-\operatorname{RootOf}\left(3 _Z^{4}+15 _Z^{3}-44_{-} Z^{2}-6 _Z+9\right.\right.$, index $\left.\left.\left.\left.=2\right)\right)\right)\right) \quad\left(x-\operatorname{RootOf}\left(3 _Z^{4}\right.\right.$
$+15 Z^{3}-44 _Z^{2}-6 _Z+9$, index $\left.\left.=2\right)\right)$
${ }^{2}\left(-\left(\left(x-\operatorname{Root} O f\left(3 Z^{4}+15 Z^{3}-44_{-} Z^{2}-6 _Z+9\right.\right.\right.\right.$, index $\left.\left.=3\right)\right)\left(\operatorname{RootOf}\left(3 Z^{4}+15 _Z^{3}-44 Z^{2}-6 _Z+9\right.\right.$, index $\left.=2\right)-\operatorname{RootOf}\left(3 _Z^{4}+15 _Z^{3}-44 _Z^{2}-6\right.$
$=1))) /\left(\left(-\operatorname{RootOf}\left(3 _Z^{4}+15 _Z^{3}-44 _Z^{2}-6 _Z+9, \operatorname{index}=3\right)+\operatorname{RootOf}\left(3 Z^{4}+15 Z^{3}-44 _Z^{2}-6 _Z+9\right.\right.\right.$, index $\left.\left.=1\right)\right)\left(x-\operatorname{Root} O f\left(3 _Z^{4}+15 _Z^{3}\right.\right.$
$-44 _Z^{2}-6 _Z+9$, index $\left.=2\right)$)))
$1 / 2$

$$
\left(-\left((x - \operatorname { R o o t O f } (3 Z ^ { 4 } + 1 5 Z ^ { 3 } - 4 4 _ { - } Z ^ { 2 } - 6 _ Z + 9 , \text { index } = 4)) \left(\operatorname{RootOf}\left(3 _Z^{4}+15 Z^{3}-44 Z^{2}-6 _Z+9, \text { index }=2\right)-\operatorname{RootOf}^{2}\left(3 _Z^{4}+15 Z^{3}-44 _Z^{2}-\right.\right.\right.\right.
$$

$=1))) /\left(\left(-\operatorname{RootOf}\left(3 Z^{4}+15 _Z^{3}-44 Z^{2}-6 _Z+9\right.\right.\right.$, index $\left.=4\right)+\operatorname{RootOf}\left(3 Z^{4}+15 _Z^{3}-44 _Z^{2}-6 _Z+9\right.$, index $\left.\left.=1\right)\right)\left(x-\operatorname{Root} O f\left(3 _Z^{4}+15 _Z^{3}\right.\right.$
$-44 _Z^{2}-6 _Z+9$, index = 2))))
1/2
$\sqrt{3}$
EllipticF $\left(\left(\left(\left(x-\operatorname{RootOf}\left(3_{-} Z^{4}+15_{-} Z^{3}-44_{-} Z^{2}-6_{-} Z+9\right.\right.\right.\right.\right.$, index $\left.\left.=1\right)\right)\left(-\operatorname{Root}^{2} O f\left(3 Z^{4}+15 Z^{3}-44_{-} Z^{2}-6_{-} Z+9\right.\right.$, index $\left.=4\right)$
$+\operatorname{RootOf}\left(3 _Z^{4}+15 _Z^{3}-44 _Z^{2}-6 _Z+9\right.$, index $\left.\left.\left.=2\right)\right)\right) /\left(\left(-\operatorname{RootOf}\left(3 _Z^{4}+15 Z^{3}-44 _Z^{2}-6 _Z+9\right.\right.\right.$, index $\left.=4\right)+\operatorname{RootOf}\left(3 _Z^{4}+15 _Z^{3}-44 _Z^{2}\right.$
$-6 _Z+9$, index $\left.\left.=1\right)\right)\left(x-\operatorname{RootOf}\left(3 _Z^{4}+15 Z^{3}-44 Z^{2}-6 _Z+9\right.\right.$, index $\left.\left.\left.\left.=2\right)\right)\right)\right)^{1 / 2}$,
$\left(\left(\left(\operatorname{RootOf}\left(3 Z^{4}+15 _Z^{3}-44_{-} Z^{2}-6 _Z+9\right.\right.\right.\right.$, index $\left.=2\right)-\operatorname{RootOf}\left(3 _Z^{4}+15 Z^{3}-44 _Z^{2}-6 _Z+9\right.$, index $\left.\left.=3\right)\right)\left(-\operatorname{RootOf}\left(3 _Z^{4}+15 Z^{3}-44 _Z^{2}-6 _Z+1\right.\right.$ $-44_{-} Z^{2}-6_{-} Z+9$, index $\left.=4\right)+\operatorname{RootOf}\left(3 Z^{4}+15 Z^{3}-44_{-} Z^{2}-6_{-} Z+9\right.$, index $\left.\left.\left.\left.\left.=2\right)\right)\right)^{1 / 2}\right)\right) /\left(3\left(\operatorname{RootOf}^{1 / 2}\left(3 Z^{4}+15 Z^{3}-44_{-} Z^{2}-6 Z_{-} Z^{2}\right.\right.\right.$, $\left.\operatorname{index}=4)-\operatorname{RootOf}\left(3 Z^{4}+15 Z^{3}-44 __{-} Z^{2}-6 _Z+9, \operatorname{index}=2\right)\right)\left(\operatorname{RootOf}\left(3 Z^{4}+15 Z^{3}-44 Z^{2}-6 _Z+9\right.\right.$, index $\left.=2\right)-R o o t O f\left(3 _Z^{4}+15 Z^{3}\right.$ $-44 _Z^{2}-6 _Z+9$, index $\left.=1\right)$)
$\left(\left(x-\operatorname{RootOf}\left(3 Z^{4}+15 _Z^{3}-44 _Z^{2}-6 _Z+9\right.\right.\right.$, index $\left.\left.=1\right)\right)\left(x-\operatorname{Root} O f\left(3 _Z^{4}+15 _Z^{3}-44 Z^{2}-6 _Z+9\right.\right.$, index $\left.\left.=2\right)\right)\left(x-R o o t O f\left(3 _Z^{4}+15 _Z^{3}-44 _Z^{2}\right.\right.$ $=4))^{1 / 2}$)

Problem 223: Result more than twice size of optimal antiderivative.

$$
\int \frac{1}{-3 x^{2}+3+(-5-4 x) \sqrt{-x^{2}+1}} \mathrm{~d} x
$$

Optimal(type 2, 27 leaves, 16 steps):

$$
\frac{3}{5(4+5 x)}+\frac{\sqrt{-x^{2}+1}}{4+5 x}
$$

Result(type 2, 80 leaves):

$$
\frac{3}{5(4+5 x)}+\frac{5\left(-\left(x+\frac{4}{5}\right)^{2}+\frac{8 x}{5}+\frac{41}{25}\right)^{3 / 2}}{9\left(x+\frac{4}{5}\right)}+\frac{5 x \sqrt{-\left(x+\frac{4}{5}\right)^{2}+\frac{8 x}{5}+\frac{41}{25}}}{9}+\frac{\sqrt{-(-1+x)^{2}-2 x+2}}{18}-\frac{\sqrt{-(1+x)^{2}+2 x+2}}{2}
$$

Problem 228: Result more than twice size of optimal antiderivative.

$$
\int \frac{1}{\sqrt{2-3 x} \sqrt{2+3 x}} d x
$$

Optimal(type 3, 6 leaves, 2 steps):

$$
\frac{\arcsin \left(\frac{3 x}{2}\right)}{3}
$$

Result(type 3, 33 leaves):

$$
\frac{\sqrt{(2-3 x)(2+3 x)} \arcsin \left(\frac{3 x}{2}\right)}{3 \sqrt{2-3 x} \sqrt{2+3 x}}
$$

Problem 229: Result more than twice size of optimal antiderivative.

$$
\int \frac{1}{\sqrt{3-x} \sqrt{5+x}} \mathrm{~d} x
$$

Optimal(type 3, 6 leaves, 3 steps):

$$
\arcsin \left(\frac{1}{4}+\frac{x}{4}\right)
$$

Result(type 3, 30 leaves):

$$
\frac{\sqrt{(3-x)(5+x)} \arcsin \left(\frac{1}{4}+\frac{x}{4}\right)}{\sqrt{3-x} \sqrt{5+x}}
$$

Problem 231: Result more than twice size of optimal antiderivative.

$$
\int \frac{(a x+1)^{3 / 2}}{x(-a x+1)^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 3, 43 leaves, 7 steps):

$$
-\arcsin (a x)-\operatorname{arctanh}(\sqrt{-a x+1} \sqrt{a x+1})+\frac{4 \sqrt{a x+1}}{\sqrt{-a x+1}}
$$

Result(type 3, 129 leaves):

$$
\begin{aligned}
& \frac{1}{(a x-1) \sqrt{-a^{2} x^{2}+1}}\left(\left(-\operatorname{arctanh}\left(\frac{1}{\sqrt{-a^{2} x^{2}+1}}\right) \operatorname{csgn}(a) x a-\arctan \left(\frac{\operatorname{csgn}(a) a x}{\sqrt{-a^{2} x^{2}+1}}\right) x a+\operatorname{arctanh}\left(\frac{1}{\sqrt{-a^{2} x^{2}+1}}\right) \operatorname{csgn}(a)-4 \sqrt{-a^{2} x^{2}+1} \operatorname{csgn}(a)\right.\right. \\
& \left.\left.\quad+\arctan \left(\frac{\operatorname{csgn}(a) a x}{\sqrt{-a^{2} x^{2}+1}}\right)\right) \operatorname{csgn}(a) \sqrt{-a x+1} \sqrt{a x+1}\right)
\end{aligned}
$$

Problem 233: Unable to integrate problem.

$$
\int\left(\frac{c x^{2}+a+b}{d}\right)^{m} \mathrm{~d} x
$$

Optimal(type 5, 47 leaves, 3 steps):

$$
\frac{d x\left(\frac{a+b}{d}+\frac{c x^{2}}{d}\right)^{1+m} \text { hypergeom }\left(\left[1, \frac{3}{2}+m\right],\left[\frac{3}{2}\right],-\frac{c x^{2}}{a+b}\right)}{a+b}
$$

Result(type 8, 16 leaves):

$$
\int\left(\frac{c x^{2}+a+b}{d}\right)^{m} \mathrm{~d} x
$$

Problem 234: Result more than twice size of optimal antiderivative.

$$
\int \frac{1}{x-\sqrt{-x^{2}+1}} d x
$$

Optimal(type 3, 29 leaves, 7 steps):

$$
-\frac{\arcsin (x)}{2}-\frac{\operatorname{arctanh}\left(\frac{x}{\sqrt{-x^{2}+1}}\right)}{2}+\frac{\ln \left(-2 x^{2}+1\right)}{4}
$$

Result(type 3, 174 leaves):
$\frac{\ln \left(2 x^{2}-1\right)}{4}+\frac{\sqrt{2} \sqrt{-4\left(x-\frac{\sqrt{2}}{2}\right)^{2}-4\left(x-\frac{\sqrt{2}}{2}\right) \sqrt{2}+2}}{8}-\frac{\arcsin (x)}{2}-\frac{\operatorname{arctanh} \frac{\left(x-\frac{\sqrt{2}}{2}\right)^{2}-4\left(x-\frac{\sqrt{2}}{2}\right) \sqrt{2}+2}{\sqrt{-4(x-2}}}{4}$

$$
-\frac{\sqrt{2} \sqrt{-4\left(x+\frac{\sqrt{2}}{2}\right)^{2}+4\left(x+\frac{\sqrt{2}}{2}\right) \sqrt{2}+2}}{8}+\frac{\operatorname{arctanh}\left(\frac{\left(\left(x+\frac{\sqrt{2}}{2}\right) \sqrt{2}+1\right) \sqrt{2}}{\sqrt{-4\left(x+\frac{\sqrt{2}}{2}\right)^{2}+4\left(x+\frac{\sqrt{2}}{2}\right) \sqrt{2}+2}}\right)}{4}
$$

Problem 236: Result more than twice size of optimal antiderivative.

$$
\int \frac{x \sqrt{-x^{2}+2}}{x-\sqrt{-x^{2}+2}} d x
$$

Optimal(type 3, 46 leaves, 12 steps):

$$
-\frac{x^{2}}{4}-\frac{\operatorname{arctanh}\left(\frac{x}{\sqrt{-x^{2}+2}}\right)}{2}+\frac{\ln (1-x)}{4}+\frac{\ln (1+x)}{4}+\frac{x \sqrt{-x^{2}+2}}{4}
$$

Result(type 3, 110 leaves):

$$
\begin{aligned}
-\frac{x^{2}}{4} & +\frac{\ln (-1+x)}{4}+\frac{\ln (1+x)}{4}+\frac{x \sqrt{-x^{2}+2}}{4}+\frac{\sqrt{-(-1+x)^{2}-2 x+3}}{4}-\frac{\operatorname{arctanh}\left(\frac{-2 x+4}{2 \sqrt{-(-1+x)^{2}-2 x+3}}\right)}{4}-\frac{\sqrt{-(1+x)^{2}+2 x+3}}{4} \\
& +\frac{\operatorname{arctanh}\left(\frac{2 x+4}{2 \sqrt{-(1+x)^{2}+2 x+3}}\right)}{4}
\end{aligned}
$$

Problem 237: Result more than twice size of optimal antiderivative.

$$
\int \frac{1}{\sqrt{a+\frac{b}{x^{2}}} \sqrt{d x^{2}+c}} \mathrm{~d} x
$$

Optimal(type 3, 54 leaves, 5 steps):

$$
\frac{\operatorname{arctanh}\left(\frac{\sqrt{d} \sqrt{a x^{2}+b}}{\sqrt{a} \sqrt{d x^{2}+c}}\right) \sqrt{a x^{2}+b}}{x \sqrt{a} \sqrt{d} \sqrt{a+\frac{b}{x^{2}}}}
$$

Result(type 3, 116 leaves)

$$
\frac{\left(a x^{2}+b\right) \ln \left(\frac{2 a d x^{2}+2 \sqrt{a d x^{4}+a c x^{2}+b d x^{2}+b c} \sqrt{a d}+a c+b d}{2 \sqrt{a d}}\right) \sqrt{d x^{2}+c}}{2 \sqrt{\frac{a x^{2}+b}{x^{2}}} x \sqrt{a d x^{4}+a c x^{2}+b d x^{2}+b c} \sqrt{a d}}
$$

Problem 240: Result more than twice size of optimal antiderivative.

$$
\int \frac{\sqrt{2-\frac{b}{x^{2}}}}{2 x^{2}-b} \mathrm{~d} x
$$

Optimal(type 3, 14 leaves, 3 steps):

$$
-\frac{\operatorname{arccsc}\left(\frac{x \sqrt{2}}{\sqrt{b}}\right)}{\sqrt{b}}
$$

Result(type 3, 61 leaves):

$$
-\frac{\sqrt{\frac{2 x^{2}-b}{x^{2}}} x \ln \left(\frac{2\left(\sqrt{-b} \sqrt{2 x^{2}-b}-b\right)}{x}\right)}{\sqrt{2 x^{2}-b} \sqrt{-b}}
$$

Problem 241: Result more than twice size of optimal antiderivative.

$$
\int \frac{\sqrt{a+\frac{c}{x^{2}}+\frac{b}{x}}}{e x+d} d x
$$

Optimal(type 3, 157 leaves, 10 steps):
$\frac{\operatorname{arctanh}\left(\frac{2 a+\frac{b}{x}}{2 \sqrt{a} \sqrt{a+\frac{c}{x^{2}}+\frac{b}{x}}}\right) \sqrt{a}}{e}-\frac{\operatorname{arctanh}\left(\frac{b+\frac{2 c}{x}}{2 \sqrt{c} \sqrt{a+\frac{c}{x^{2}}+\frac{b}{x}}}\right) \sqrt{c}}{d}$

$$
-\frac{\operatorname{arctanh}\left(\frac{2 a d-b e+\frac{b d-2 e c}{x}}{2 \sqrt{a d^{2}-e(b d-e c)} \sqrt{a+\frac{c}{x^{2}}+\frac{b}{x}}}\right) \sqrt{a d^{2}-e(b d-e c)}}{d e}
$$

Result(type 3, 382 leaves):
$\frac{1}{\sqrt{a x^{2}+b x+c} d e^{2} \sqrt{\frac{a d^{2}-b d e+c e^{2}}{e^{2}}}}\left(\sqrt{\frac{a x^{2}+b x+c}{x^{2}}} x\left(\ln \left(\frac{2 \sqrt{a x^{2}+b x+c} \sqrt{a}+2 a x+b}{2 \sqrt{a}}\right) \sqrt{a} d e \sqrt{\frac{a d^{2}-b d e+c e^{2}}{e^{2}}}\right.\right.$
$-\sqrt{c} \ln \left(\frac{2 c+b x+2 \sqrt{c} \sqrt{a x^{2}+b x+c}}{x}\right) e^{2} \sqrt{\frac{a d^{2}-b d e+c e^{2}}{e^{2}}}$
$+d^{2} \ln \left(\frac{2 \sqrt{a x^{2}+b x+c} \sqrt{\frac{a d^{2}-b d e+c e^{2}}{e^{2}}} e-2 a d x+x b e-b d+2 e c}{e x+d}\right) a$
$-\ln \left(\frac{2 \sqrt{a x^{2}+b x+c} \sqrt{\frac{a d^{2}-b d e+c e^{2}}{e^{2}}} e-2 a d x+x b e-b d+2 e c}{e x+d}\right) b d e$
$\left.\left.+\ln \left(\frac{2 \sqrt{a x^{2}+b x+c} \sqrt{\frac{a d^{2}-b d e+c e^{2}}{e^{2}}} e-2 a d x+x b e-b d+2 e c}{e x+d}\right) c e^{2}\right)\right)$

Problem 244: Unable to integrate problem.

$$
\int \frac{x^{-1+m}\left(2 a m+b(2 m-n) x^{n}\right)}{2\left(a+b x^{n}\right)^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 3, 13 leaves, 2 steps):

$$
\frac{x^{m}}{\sqrt{a+b x^{n}}}
$$

Result(type 8, 35 leaves):

$$
\int \frac{x^{-1+m}\left(2 a m+b(2 m-n) x^{n}\right)}{2\left(a+b x^{n}\right)^{3 / 2}} \mathrm{~d} x
$$

Problem 252: Result more than twice size of optimal antiderivative.

$$
\int \sqrt{\frac{x}{1+x}} \mathrm{~d} x
$$

Optimal(type 3, 16 leaves, 4 steps):

$$
-\operatorname{arcsinh}(\sqrt{x})+\sqrt{x} \sqrt{1+x}
$$

Result(type 3, 44 leaves):

$$
\frac{\sqrt{\frac{x}{1+x}}(1+x)\left(2 \sqrt{x^{2}+x}-\ln \left(\frac{1}{2}+x+\sqrt{x^{2}+x}\right)\right)}{2 \sqrt{(1+x) x}}
$$

Problem 253: Result more than twice size of optimal antiderivative.

$$
\int \frac{1}{1-x^{2}+\sqrt{5}+x^{2} \sqrt{5}} d x
$$

Optimal(type 3, 12 leaves, 2 steps):

$$
\frac{\arctan \left(x\left(\frac{\sqrt{5}}{2}-\frac{1}{2}\right)\right)}{2}
$$

Result(type 3, 31 leaves):

$$
\frac{4 \arctan \left(\frac{4 x}{2+2 \sqrt{5}}\right)}{(\sqrt{5}-1)(2+2 \sqrt{5})}
$$

Problem 257: Unable to integrate problem.

$$
\int \sqrt{1-x^{2}+x \sqrt{x^{2}-1}} \mathrm{~d} x
$$

Optimal(type 3, 49 leaves, ? steps):

$$
\frac{3 \arcsin \left(x-\sqrt{x^{2}-1}\right) \sqrt{2}}{8}+\frac{\left(3 x+\sqrt{x^{2}-1}\right) \sqrt{1-x^{2}+x \sqrt{x^{2}-1}}}{4}
$$

Result(type 8, 20 leaves):

$$
\int \sqrt{1-x^{2}+x \sqrt{x^{2}-1}} \mathrm{~d} x
$$

Problem 258: Unable to integrate problem.

$$
\int \frac{\sqrt{-x+\sqrt{x} \sqrt{1+x}}}{\sqrt{1+x}} \mathrm{~d} x
$$

Optimal(type 3, 46 leaves, ? steps):

$$
-\frac{3 \arcsin (\sqrt{x}-\sqrt{1+x}) \sqrt{2}}{4}+\frac{(\sqrt{x}+3 \sqrt{1+x}) \sqrt{-x+\sqrt{x} \sqrt{1+x}}}{2}
$$

Result(type 8, 23 leaves):

$$
\int \frac{\sqrt{-x+\sqrt{x} \sqrt{1+x}}}{\sqrt{1+x}} \mathrm{~d} x
$$

Problem 259: Result more than twice size of optimal antiderivative.

$$
\int \frac{-x-2 \sqrt{x^{2}+1}}{x+x^{3}+\sqrt{x^{2}+1}} d x
$$

Optimal(type 3, 58 leaves, ? steps):

$$
\operatorname{arctanh}\left(\left(x+\sqrt{x^{2}+1}\right) \sqrt{2+\sqrt{5}}\right) \sqrt{-2+2 \sqrt{5}}-\arctan \left(\left(x+\sqrt{x^{2}+1}\right) \sqrt{-2+\sqrt{5}}\right) \sqrt{2+2 \sqrt{5}}
$$

Result(type 3, 437 leaves):

$$
\begin{aligned}
& -\frac{\sqrt{5} \arctan \left(\frac{2 x}{\sqrt{2+2 \sqrt{5}}}\right)}{\sqrt{2+2 \sqrt{5}}}-\frac{\arctan \left(\frac{2 x}{\sqrt{2+2 \sqrt{5}}}\right)}{\sqrt{2+2 \sqrt{5}}}-\frac{\sqrt{5} \operatorname{arctanh}\left(\frac{2 x}{\sqrt{-2+2 \sqrt{5}}}\right)}{\sqrt{-2+2 \sqrt{5}}}+\frac{\operatorname{arctanh}\left(\frac{2 x}{\sqrt{-2+2 \sqrt{5}}}\right)}{\sqrt{-2+2 \sqrt{5}}}-\frac{\sqrt{x^{2}+1}}{2}-\frac{x}{2} \\
& +\frac{3 \sqrt{5} \operatorname{arctanh}\left(\frac{\sqrt{x^{2}+1}-x}{\sqrt{-2+\sqrt{5}}}\right)}{10 \sqrt{-2+\sqrt{5}}}-\frac{\operatorname{arctanh}\left(\frac{\sqrt{x^{2}+1}-x}{\sqrt{-2+\sqrt{5}}}\right)}{2 \sqrt{-2+\sqrt{5}}}+\frac{3 \sqrt{5} \arctan \left(\frac{\sqrt{x^{2}+1}-x}{\sqrt{2+\sqrt{5}}}\right)}{10 \sqrt{2+\sqrt{5}}}+\frac{\arctan \left(\frac{\sqrt{x^{2}+1}-x}{\sqrt{2+\sqrt{5}}}\right)}{2 \sqrt{2+\sqrt{5}}}+\frac{1}{2\left(\sqrt{x^{2}+1}-x\right)} \\
& +\frac{\operatorname{arctanh}\left(\frac{\sqrt{x^{2}+1}-x}{\sqrt{2+\sqrt{5}}}\right)}{2 \sqrt{2+\sqrt{5}}}+\frac{\sqrt{5} \operatorname{arctanh}\left(\frac{\sqrt{x^{2}+1}-x}{\sqrt{2+\sqrt{5}}}\right)}{2 \sqrt{2+\sqrt{5}}}-\frac{\arctan \left(\frac{\sqrt{x^{2}+1}-x}{\sqrt{-2+\sqrt{5}}}\right)}{2 \sqrt{-2+\sqrt{5}}}+\frac{\sqrt{5} \arctan \left(\frac{\sqrt{x^{2}+1}-x}{\sqrt{-2+\sqrt{5}}}\right)}{2 \sqrt{-2+\sqrt{5}}}
\end{aligned}
$$

$$
+\frac{2 \sqrt{-2+\sqrt{5}} \sqrt{5} \operatorname{arctanh}\left(\frac{\sqrt{x^{2}+1}-x}{\sqrt{-2+\sqrt{5}}}\right)}{5}-\frac{2 \sqrt{5} \sqrt{2+\sqrt{5}} \arctan \left(\frac{\sqrt{x^{2}+1}-x}{\sqrt{2+\sqrt{5}}}\right)}{5}
$$

Problem 260: Result more than twice size of optimal antiderivative.

$$
\int \frac{x}{\sqrt{b d^{4} x^{4}+4 b c d^{3} x^{3}+6 b c^{2} d^{2} x^{2}+4 b c^{3} d x+b c^{4}+a}} \mathrm{~d} x
$$

Optimal(type 4, 195 leaves, 7 steps):
$\frac{\operatorname{arctanh}\left(\frac{d^{2}\left(\frac{c}{d}+x\right)^{2} \sqrt{b}}{\sqrt{a+b d^{4}\left(\frac{c}{d}+x\right)^{4}}}\right)}{2 d^{2} \sqrt{b}}$

$$
\begin{aligned}
& -\frac{1}{2 \cos \left(2 \arctan \left(\frac{b^{1 / 4}(d x+c)}{a^{1 / 4}}\right)\right) a^{1 / 4} b^{1 / 4} d^{2} \sqrt{a+b d^{4}\left(\frac{c}{d}+x\right)^{4}}} \sqrt{c \sqrt{\cos \left(2 \arctan \left(\frac{b^{1 / 4}(d x+c)}{a^{1 / 4}}\right)\right)^{2}} \operatorname{EllipticF}(\sin (2} \\
& \left.\left.\left.\arctan \left(1 / a^{1 / 4}\left(b^{1 / 4}(d x+c)\right)\right)\right), \frac{\sqrt{2}}{2}\right)\left(\sqrt{a}+d^{2}\left(\frac{c}{d}+x\right)^{2} \sqrt{b}\right) \sqrt{\left(\sqrt{a}+d^{2}\left(\frac{c}{d}+x\right)^{2} \sqrt{b}\right)^{2}}\right)
\end{aligned}
$$

Result(type 4, 1527 leaves):
$\left(2\left(\frac{\frac{\left(-a b^{3}\right)^{1 / 4}}{b}-c}{d}-\frac{-\frac{\mathrm{I}\left(-a b^{3}\right)^{1 / 4}}{b}-c}{d}\right)\right.$

$$
\sqrt{\left(\frac{-\frac{\mathrm{I}\left(-a b^{3}\right)^{1 / 4}}{b}-c}{d}-\frac{\left.\frac{\mathrm{I}\left(-a b^{3}\right)^{1 / 4}}{b}-c\right)}{d}\right)\left(x-\frac{\frac{\left(-a b^{3}\right)^{1 / 4}}{b}-c}{d}\right)}\left(\frac{-\frac{\mathrm{I}\left(-a b^{3}\right)^{1 / 4}}{b}-c}{d}-\frac{\frac{\left(-a b^{3}\right)^{1 / 4}}{b}-c}{d}\right)\left(x-\frac{\frac{\mathrm{I}\left(-a b^{3}\right)^{1 / 4}}{b}-c}{d}\right)(x
$$

$$
\left.-\frac{\frac{\mathrm{I}\left(-a b^{3}\right)^{1 / 4}}{b}-c}{d}\right)
$$

$$
\begin{aligned}
& 2 \sqrt{\left(\frac{\frac{\mathrm{I}\left(-a b^{3}\right)^{1 / 4}}{b}-c}{d}-\frac{\left.\frac{\left(-a b^{3}\right)^{1 / 4}}{b}-c\right)}{\left(\frac{-\frac{\left(-a b^{3}\right)^{1 / 4}}{b}-c}{d}-\frac{\frac{\left(-a b^{3}\right)^{1 / 4}}{b}-c}{d}\right)\left(x-\frac{-\frac{\left(-a b^{3}\right)^{1 / 4}}{b}-c}{d}\right)}\right.} \\
& \sqrt{\left(\frac{\left(\frac{\frac{\mathrm{I}\left(-a b^{3}\right)^{1 / 4}}{b}-c}{d}-\frac{\frac{\left(-a b^{3}\right)^{1 / 4}}{b}-c}{d}\right)\left(x-\frac{-\frac{\mathrm{I}\left(-a b^{3}\right)^{1 / 4}}{b}-c}{d}\right)}{\left(\frac{-\frac{\mathrm{I}\left(-a b^{3}\right)^{1 / 4}}{b}-c}{d}-\frac{\frac{\left(-a b^{3}\right)^{1 / 4}}{b}-c}{d}\right)\left(x-\frac{\frac{\mathrm{I}\left(-a b^{3}\right)^{1 / 4}}{b}-c}{d}\right)}\right.} \sqrt{d} \sqrt{d}\left(\frac{\mathrm{I}\left(-a b^{3}\right)^{1 / 4}}{b}\right. \\
& -c) \text { EllipticF } \sqrt{\left(\frac{-\frac{\mathrm{I}\left(-a b^{3}\right)^{1 / 4}}{b}-c}{\left.\frac{d}{d}-\frac{\frac{\mathrm{I}\left(-a b^{3}\right)^{1 / 4}}{b}-c}{d}\right)\left(x-\frac{\frac{\left(-a b^{3}\right)^{1 / 4}}{b}-c}{d}\right)}\right.} \sqrt[\left(\frac{-\frac{\mathrm{I}\left(-a b^{3}\right)^{1 / 4}}{b}-c}{d}-\frac{\frac{\left(-a b^{3}\right)^{1 / 4}}{b}-c}{d}\right)\left(x-\frac{\frac{\mathrm{I}\left(-a b^{3}\right)^{1 / 4}}{b}-c}{d}\right)]{d}, \\
& \left.\sqrt{\left(\frac{\left(\frac{\frac{\mathrm{I}\left(-a b^{3}\right)^{1 / 4}}{b}-c}{d}-\frac{-\frac{\left(-a b^{3}\right)^{1 / 4}}{b}-c}{d}\right)\left(\frac{\frac{\left(-a b^{3}\right)^{1 / 4}}{b}-c}{d}-\frac{-\frac{\mathrm{I}\left(-a b^{3}\right)^{1 / 4}}{b}-c}{d}\right)}{\left(\frac{\frac{\left(-a b^{3}\right)^{1 / 4}}{b}-c}{d}-\frac{-\frac{\left(-a b^{3}\right)^{1 / 4}}{b}-c}{d}\right)\left(\frac{\frac{\mathrm{I}\left(-a b^{3}\right)^{1 / 4}}{b}-c}{d}-\frac{-\frac{\mathrm{I}\left(-a b^{3}\right)^{1 / 4}}{b}-c}{d}\right)}\right)}\right)\left(\frac{\frac{\left(-a b^{3}\right)^{1 / 4}}{b}-c}{d}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left((\frac { - \frac { \mathrm { I } (- a b ^ { 3 }) ^ { 1 / 4 } } { b } - c } { d } - \frac { \frac { \mathrm { I } (- a b ^ { 3 }) ^ { 1 / 4 } } { b } - c } { d }) \left(\frac{\frac{\mathrm{I}\left(-a b^{3}\right)^{1 / 4}}{b}-c}{d}\right.\right. \\
& \left.-\frac{\frac{\left(-a b^{3}\right)^{1 / 4}}{b}-c}{d}\right) \sqrt{b d^{4}\left(x-\frac{\frac{\left(-a b^{3}\right)^{1 / 4}}{b}-c}{d}\right)\left(x-\frac{\frac{\mathrm{I}\left(-a b^{3}\right)^{1 / 4}}{b}-c}{d}\right)\left(x-\frac{-\frac{\left(-a b^{3}\right)^{1 / 4}}{b}-c}{d}\right)\left(x-\frac{-\frac{\mathrm{I}\left(-a b^{3}\right)^{1 / 4}}{b}-c}{d}\right)}
\end{aligned}
$$

Problem 261: Result is not expressed in closed-form.

Optimal(type 3, 44 leaves, 2 steps):

$$
\frac{\operatorname{arctanh}\left(\frac{x \sqrt{-a e+b d}}{\sqrt{d} \sqrt{c x^{4}+b x^{2}+a}}\right)}{\sqrt{d} \sqrt{-a e+b d}}
$$

Result(type 7, 513 leaves):
$-\frac{\sqrt{2} \sqrt{4-\frac{2\left(-b+\sqrt{-4 a c+b^{2}}\right) x^{2}}{a}} \sqrt{4+\frac{2\left(b+\sqrt{-4 a c+b^{2}}\right) x^{2}}{a}} \text { EllipticF }\left(\frac{x \sqrt{2} \sqrt{\frac{-b+\sqrt{-4 a c+b^{2}}}{a}}}{2}, \frac{\sqrt{-4+\frac{2 b\left(b+\sqrt{-4 a c+b^{2}}\right)}{a c}}}{2}\right)}{2}$

$$
-\frac{1}{4 d}\left(a \sum _ { - \alpha = \text { RootOf } (c d _ ^ { 4 } + a e _ Z ^ { 2 } + a d) _ \alpha (2 _ \alpha ^ { 2 } c d + a e) } \frac { 1 } { } (- _ \alpha ^ { 2 } e - 2 d) \left(-\frac{\operatorname{arctanh}\left(\frac{2 _\alpha^{2} c x^{2}+b _\alpha^{2}+b x^{2}+2 a}{2 \sqrt{\frac{\alpha^{2}(-a e+b d)}{d}} \sqrt{c x^{4}+b x^{2}+a}}\right)}{\sqrt{\frac{\alpha^{2}(-a e+b d)}{d}}}\right.\right.
$$

$$
+\frac{1}{a d \sqrt{\frac{-b+\sqrt{-4 a c+b^{2}}}{a}} \sqrt{c x^{4}+b x^{2}+a}}\left(\sqrt{2} _{ }_{-} __{-} \alpha^{2} c d\right.
$$

$$
+a e) \sqrt{2+\frac{b x^{2}}{a}-\frac{x^{2} \sqrt{-4 a c+b^{2}}}{a}} \sqrt{2+\frac{b x^{2}}{a}+\frac{x^{2} \sqrt{-4 a c+b^{2}}}{a}} \text { EllipticPi }\left(\frac{x \sqrt{2} \sqrt{\frac{-b+\sqrt{-4 a c+b^{2}}}{a}}}{2}\right.
$$

$$
\left.\left.\xlongequal{\alpha^{2} \sqrt{-4 a c+b^{2}} c d+\alpha^{2} b c d+\sqrt{-4 a c+b^{2}} a e+a b e} \text { 2adc}, \frac{\sqrt{-\frac{b+\sqrt{-4 a c+b^{2}}}{2 a}} \sqrt{2}}{\sqrt{\frac{-b+\sqrt{-4 a c+b^{2}}}{a}}}\right)\right) \text {)))) }
$$

Problem 262: Unable to integrate problem.

$$
\int \sqrt{\frac{x^{n}}{1+x^{n}}} \mathrm{~d} x
$$

Optimal(type 5, 32 leaves, 3 steps):

$$
\frac{2 x \text { hypergeom }\left(\left[\frac{1}{2}, \frac{1}{2}+\frac{1}{n}\right],\left[\frac{3}{2}+\frac{1}{n}\right],-x^{n}\right) \sqrt{x^{n}}}{n+2}
$$

Result(type 8, 15 leaves):

$$
\int \sqrt{\frac{x^{n}}{1+x^{n}}} \mathrm{~d} x
$$

Problem 263: Unable to integrate problem.

$$
\int \frac{\sqrt{-a x^{2}+b x \sqrt{\frac{a}{b^{2}}+\frac{a^{2} x^{2}}{b^{2}}}}}{x \sqrt{\frac{a}{b^{2}}+\frac{a^{2} x^{2}}{b^{2}}}} \mathrm{~d} x
$$

Optimal(type 3, 38 leaves, 2 steps):

$$
\frac{b \arcsin \left(\frac{a x-b \sqrt{\frac{a}{b^{2}}+\frac{a^{2} x^{2}}{b^{2}}}}{\sqrt{a}}\right) \sqrt{2}}{\sqrt{a}}
$$

Result(type 8, 54 leaves):

$$
\int \frac{\sqrt{-a x^{2}+b x \sqrt{\frac{a}{b^{2}}+\frac{a^{2} x^{2}}{b^{2}}}}}{x \sqrt{\frac{a}{b^{2}}+\frac{a^{2} x^{2}}{b^{2}}}} \mathrm{~d} x
$$

Problem 264: Unable to integrate problem.

$$
\int \frac{\sqrt{x\left(-a x+b \sqrt{\frac{a}{b^{2}}+\frac{a^{2} x^{2}}{b^{2}}}\right)}}{x \sqrt{\frac{a}{b^{2}}+\frac{a^{2} x^{2}}{b^{2}}}} \mathrm{~d} x
$$

Optimal(type 3, 38 leaves, 3 steps):

$$
\frac{b \arcsin \left(\frac{a x-b \sqrt{\frac{a}{b^{2}}+\frac{a^{2} x^{2}}{b^{2}}}}{\sqrt{a}}\right) \sqrt{2}}{\sqrt{a}}
$$

Result(type 8, 53 leaves):

$$
\int \frac{\sqrt{x\left(-a x+b \sqrt{\frac{a}{b^{2}}+\frac{a^{2} x^{2}}{b^{2}}}\right)}}{\sqrt[x]{\frac{a}{b^{2}}+\frac{a^{2} x^{2}}{b^{2}}}} \mathrm{~d} x
$$

Problem 265: Result more than twice size of optimal antiderivative.

$$
\int \frac{-\sqrt{x-4}+x \sqrt{x-4}-4 \sqrt{-1+x}+x \sqrt{-1+x}}{\left(x^{2}-5 x+4\right)(1+\sqrt{x-4}+\sqrt{-1+x})} \mathrm{d} x
$$

Optimal (type 3, 15 leaves, 3 steps):

$$
2 \ln (1+\sqrt{x-4}+\sqrt{-1+x})
$$

Result(type 3, 146 leaves):

$$
+\frac{\sqrt{x-4} \sqrt{-1+x}\left(2 \ln \left(-\frac{5}{2}+x+\sqrt{x^{2}-5 x+4}\right)-5 \operatorname{arctanh}\left(\frac{-17+5 x}{4 \sqrt{x^{2}-5 x+4}}\right)\right)}{4 \sqrt{x^{2}-5 x+4}}
$$

Problem 266: Result unnecessarily involves higher level functions and more than twice size of optimal antiderivative

$$
\int \frac{x}{\sqrt{5308416 c^{4} x^{4}+576000 b^{2} c^{2} x^{2}+576000 b^{3} c x-44375 b^{4}}} \mathrm{~d} x
$$

Optimal(type 3, 173 leaves, 1 step):
$\frac{1}{18432 c^{2}}\left(\ln \left(20738073600000000 b^{8} c^{4}+597005697024000000 b^{6} c^{6} x^{2}+2583100705996800000 b^{5} c^{7} x^{3}+951050714480640000 b^{4} c^{8} x^{4}\right.\right.$
$+21641687369515008000 b^{3} c^{9} x^{5}+32462531054272512000 b^{2} c^{10} x^{6}+149587343098087735296 c^{12} x^{8}+5308416\left(12230590464 c^{10} x^{6}\right.$
$\left.+1990656000 b^{2} c^{8} x^{4}+1105920000 b^{3} c^{7} x^{3}+38880000 b^{4} c^{6} x^{2}+79200000 b^{5} c^{5} x+12203125 b^{6} c^{4}\right)$
$\left.\left.\sqrt{5308416 c^{4} x^{4}+576000 b^{2} c^{2} x^{2}+576000 b^{3} c x-44375 b^{4}}\right)\right)$
Result(type 4, 1596 leaves):
$\frac{5 \operatorname{RootOf}\left(Z^{4}+10 _Z^{2}+96 _-71, \text { index }=1\right) b}{48 c}$
$\left.-\frac{5 \operatorname{RootOf}\left(Z^{4}+10-Z^{2}+96 Z-71, \text { index }=4\right) b}{48 c}\right)$
$\left(\left(\left(\frac{5 \operatorname{RootOf}\left(\not Z^{4}+10 Z^{2}+96 Z-71, \text { index }=4\right) b}{48 c}-\frac{5 \operatorname{RootOf}\left(\not Z^{4}+10 \not Z^{2}+96 Z-71, \text { index }=2\right) b}{48 c}\right)\left(x-\frac{5 \operatorname{RootOf}\left(\not Z^{4}+10 _Z^{2}+96 Z-71, \text { index }=\right.}{48 c}\right.\right.\right.$
$\left.\left.\left.-\frac{5 \operatorname{RootOf}\left(\not Z^{4}+10 _Z^{2}+96 Z-71, \text { index }=1\right) b}{48 c}\right)\left(x-\frac{5 \operatorname{RootOf}\left(Z^{4}+10 _Z^{2}+96 Z-71, \text { index }=2\right) b}{48 c}\right)\right)\right) \quad(x$
$\left.-\frac{5 \operatorname{RootOf}\left(Z^{4}+10 _Z^{2}+96 _Z-71, \text { index }=2\right) b}{48 c}\right)$
$\left(\left(\left(\frac{5 \operatorname{RootOf}\left(_Z^{4}+10 _Z^{2}+96 _Z-71, \text { index }=2\right) b}{48 c}-\frac{5 \operatorname{RootOf}\left(_Z^{4}+10 _Z^{2}+96 _Z-71, \text { index }=1\right) b}{48 c}\right)(x\right.\right.$
$\left.\left.-\frac{5 \operatorname{RootOf}\left(_Z^{4}+10 _Z^{2}+96 _Z-71, \text { index }=3\right) b}{48 c}\right)\right) /\left(\left(\frac{5 \operatorname{RootOf}\left(_Z^{4}+10 _Z^{2}+96 _Z-71, \text { index }=3\right) b}{48 c}\right.\right.$
$\left.\left.\left.-\frac{5 \operatorname{RootOf}\left(Z^{4}+10 _Z^{2}+96 _Z-71, \text { index }=1\right) b}{48 c}\right)\left(x-\frac{5 \operatorname{RootOf}\left(Z^{4}+10 _Z^{2}+96 _-71, \text { index }=2\right) b}{48 c}\right)\right)\right)$
$1 / 2$
$\left(\left(\left(\frac{5 \operatorname{RootOf}\left(_Z^{4}+10 _Z^{2}+96 _Z-71, \text { index }=2\right) b}{48 c}-\frac{5 \operatorname{RootOf}\left(_Z^{4}+10 _Z^{2}+96 _Z-71, \text { index }=1\right) b}{48 c}\right)(x\right.\right.$
$\left.\left.-\frac{5 \operatorname{RootOf}\left(Z^{4}+10 Z^{2}+96 _-71, \text { index }=4\right) b}{48 c}\right)\right) /\left(\left(\frac{5 \operatorname{RootOf}\left(Z^{4}+10 Z^{2}+96 Z-71, \text { index }=4\right) b}{48 c}\right.\right.$
$\left.\left.\left.-\frac{5 \operatorname{RootOf}\left(_Z^{4}+10 Z^{2}+96 _Z-71, \text { index }=1\right) b}{48 c}\right)\left(x-\frac{5 \operatorname{RootOf}\left(Z^{4}+10 _Z^{2}+96 _Z-71, \text { index }=2\right) b}{48 c}\right)\right)\right)^{1 / 2}\left(\frac{1}{48 c}\left(5\right.\right.$ RootOf $\left(_Z^{4}\right.$
$+10 _Z^{2}+96_{-} Z-71$, index $\left.=2\right)$
b

EllipticF $\left(\left(\left(\frac{5 \operatorname{RootOf}\left(Z^{4}+10 _Z^{2}+96 Z-71, \text { index }=4\right) b}{48 c}-\frac{5 \operatorname{RootOf}\left(\not Z^{4}+10 _Z^{2}+96 _Z-71, \text { index }=2\right) b}{48 c}\right)(x\right.\right.$
$\left.\left.-\frac{5 \operatorname{RootOf}\left(Z^{4}+10 _Z^{2}+96 _-71, \text { index }=1\right) b}{48 c}\right)\right) /\left(\left(\frac{5 \operatorname{RootOf}\left(_Z^{4}+10 Z^{2}+96 _-71, \text { index }=4\right) b}{48 c}\right.\right.$
$1 / 2$
$\left.\left.\left.-\frac{5 \operatorname{RootOf}\left(Z^{4}+10 _Z^{2}+96 _-71, \text { index }=1\right) b}{48 c}\right)\left(x-\frac{5 \operatorname{RootOf}\left(_Z^{4}+10 Z^{2}+96 _-71, \text { index }=2\right) b}{48 c}\right)\right)\right)$,
$\left(\left(\left(\frac{5 \operatorname{RootOf}\left(_Z^{4}+10 _Z^{2}+96 _Z-71, \text { index }=2\right) b}{48 c}-\frac{5 \operatorname{RootOf}\left(Z^{4}+10 _Z^{2}+96 _Z-71, \text { index }=3\right) b}{48 c}\right)\left(\frac{5 \operatorname{RootOf}\left(Z^{4}+10 _Z^{2}+96 _Z-71, \text { index }=1\right)}{48 c}\right.\right.\right.$.
$\left.-\frac{5 \operatorname{RootOf}\left(Z^{4}+10 _Z^{2}+96 Z-71, \text { index }=3\right) b}{48 c}\right)\left(\frac{5 \operatorname{RootOf}\left(\not Z^{4}+10 Z^{2}+96 Z-71, \text { index }=2\right) b}{48 c}\right.$
$\left.\left.\left.\left.-\frac{5 \operatorname{RootOf}\left(_Z^{4}+10 _Z^{2}+96 _Z-71, \text { index }=4\right) b}{48 c}\right)\right)\right)^{1 / 2}\right)+\left(\frac{5 \operatorname{Root} 0 f\left(_Z^{4}+10 _Z^{2}+96 _Z-71, \text { index }=1\right) b}{48 c}\right.$
$\left.-\frac{5 \operatorname{Root} O f\left(Z_{-} Z^{4}+10 _Z^{2}+96 _Z-71, \text { index }=2\right) b}{48 c}\right)$

EllipticPi $\left(\left(\left(\frac{5 \operatorname{RootOf}\left(__{-} Z^{4}+10 _Z^{2}+96 _Z-71, \text { index }=4\right) b}{48 c}-\frac{5 \operatorname{RootOf}\left(__{-} Z^{4}+10 _Z^{2}+96 _Z-71, \text { index }=2\right) b}{48 c}\right)(x\right.\right.$
$\left.\left.-\frac{5 \operatorname{RootOf}\left(Z^{4}+10 Z^{2}+96 _Z-71, \text { index }=1\right) b}{48 c}\right)\right) /\left(\left(\frac{5 \operatorname{RootOf}\left(Z^{4}+10 _Z^{2}+96 _-71, \text { index }=4\right) b}{48 c}\right.\right.$
$1 / 2$
$\left.\left.\left.-\frac{5 \operatorname{RootOf}\left(_Z^{4}+10 _Z^{2}+96 _Z-71, \text { index }=1\right) b}{48 c}\right)\left(x-\frac{5 \operatorname{RootOf}\left(\not Z^{4}+10 _Z^{2}+96 Z-71, \text { index }=2\right) b}{48 c}\right)\right)\right)$,
$\frac{\frac{5 \operatorname{RootOf}\left(_Z^{4}+10 _Z^{2}+96 _Z-71, \text { index }=4\right) b}{48 c}-\frac{5 \operatorname{RootOf}\left(Z_{-} Z^{4}+10 _Z^{2}+96 _Z-71, \text { index }=1\right) b}{48 c}}{\frac{5 \operatorname{RootOf}\left(_Z^{4}+10 _Z^{2}+96 _Z-71, \text { index }=4\right) b}{48 c}-\frac{5 \operatorname{RootOf}\left(_Z^{4}+10 _Z^{2}+96 _Z-71, \text { index }=2\right) b}{48 c}}$,
$\left(\left(\left(\frac{5 \operatorname{RootOf}\left(_Z^{4}+10 _Z^{2}+96 _Z-71, \text { index }=2\right) b}{48 c}-\frac{5 \operatorname{RootOf}\left(_Z^{4}+10 _Z^{2}+96 _Z-71, \text { index }=3\right) b}{48 c}\right)\left(\frac{5 \operatorname{RootOf}\left(_Z^{4}+10 _Z^{2}+96 _Z-71, \text { index }=1\right)}{48 c}\right.\right.\right.$
$\left.\left.\left.\left.-\frac{5 \operatorname{RootOf}\left(_^{4}+10 _^{2}+96 _Z-71, \text { index }=4\right) b}{48 c}\right)\right)^{1 / 2}\right)\right) \quad\left(1152\left(\frac{5 \operatorname{RootOf}\left(Z_{-} Z^{4}+10 _Z^{2}+96 _Z-71, \text { index }=4\right) b}{48 c}\right.\right.$
$\left.-\frac{5 \operatorname{Root} O f\left(_Z^{4}+10 _Z^{2}+96 _Z-71, \text { index }=2\right) b}{48 c}\right)\left(\frac{5 \operatorname{RootOf}\left(_Z^{4}+10 _Z^{2}+96 _Z-71, \text { index }=2\right) b}{48 c}\right.$

```
\(\left.-\frac{5 \operatorname{RootOf}\left(\_Z^{4}+10 \_Z^{2}+96 \_Z-71, \text { index }=1\right) b}{48 c}\right)\)
\(\left(c^{4}\left(x-\frac{5 \operatorname{RootOf}\left(Z_{-} Z^{4}+10 \_Z^{2}+96 \_Z-71, \text { index }=1\right) b}{48 c}\right)\left(x-\frac{5 \operatorname{RootOf}\left(Z_{-}^{4}+10 \_Z^{2}+96 \_Z-71, \text { index }=2\right) b}{48 c}\right)\left(x-\frac{5 \operatorname{RootOf}\left(\_Z^{4}+10 \_Z^{2}+96 \_Z-7\right.}{48 c}\right.\right.\)
\(\left.\left.\left.-\frac{5 \operatorname{RootOf}\left(\_Z^{4}+10 \_Z^{2}+96 \_Z-71, \text { index }=4\right) b}{48 c}\right)\right)^{1 / 2}\right)\)
```


Summary of Integration Test Results

402 integration problems

A - 227 optimal antiderivatives
B - 88 more than twice size of optimal antiderivatives
C - 9 unnecessarily complex antiderivatives
D - 78 unable to integrate problems
E - 0 integration timeouts

[^0]: Problem 87: Result more than twice size of optimal antiderivative.

